Категории
Самые читаемые
onlinekniga.com » Домоводство, Дом и семья » Развлечения » Математические головоломки и развлечения - Мартин Гарднер

Математические головоломки и развлечения - Мартин Гарднер

Читать онлайн Математические головоломки и развлечения - Мартин Гарднер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 83 84 85 86 87 88 89 90 91 ... 97
Перейти на страницу:

— Я не знаю вашего предсказания, а вы не знаете, в чем состоит событие. Вероятность того, что вы угадали правильно, равна 1/2.

Я кивнул.

— Я предлагаю вам пари. Если ваше предсказание ошибочно, вы платите мне десять центов. Если же оно верно, я плачу вам миллион долларов.

Все удивились.

— Вот это ставка, — проговорил я.

— А пока мы ждем, — продолжал Аполлинакс, обращаясь к Нэнси, — вернемся снова к теории относительности. Хотите знать, каким образом вы можете всегда носить относительно чистый свитер, даже если у вас есть только два свитера и вы их никогда не стираете?

— Я вся обратилась в слух, — ответила Нэнси улыбаясь.

— Не думайте плохого, — извинился Аполлинакс, — у вас есть и другие приметы, в том числе очень милые, но позвольте мне все-таки объяснить, как обстоит дело со свитерами. Вы должны носить самый чистый свитер (назовем его А) до тех пор, пока он не станет грязнее свитера В. Затем вы должны снять А и надеть относительно чистый свитер В. В тот момент, когда В станет грязнее А, вы снимаете В и снова надеваете А и т. д.

Нэнси сделала гримасу.

— К сожалению, я не могу ждать до шести часов, — сказал Аполлинакс, — тем более в такой теплый весенний вечер в Манхэттене. Вы случайно не знаете, не играет ли где-нибудь сегодня вечером Телониус Монк?

Нэнси широко раскрыла глаза.

— Конечно, знаю. Он играет как раз здесь, в Гринвич-Вилледж.

А вам нравится его манера исполнения?

— Я просто изучаю ее, — ответил Аполлинакс. — А теперь, если бы вы могли указать мне какой-нибудь ресторан, где мы с вами могли бы пообедать, то я бы объяснил вам тайну исчезновения кубика, а затем мы отправились бы слушать Монка.

После того как Аполлинакс, держа Нэнси под руку, ушел, слух о нашем пари быстро распространился среди гостей. Когда наступило шесть часов, все собрались, чтобы узнать, что же написали Аполлинакс и я. Прав оказался он. Событие было логически непредсказуемым, и я проиграл ему десять центов.

Для собственного развлечения читатель может попробовать отгадать, какое будущее событие предсказал Аполлинакс.

* * *

Многие читатели всерьез поверили в существование Аполлинакса (хотя я и сказал, что он был протеже Бурбаки, известного, но не существующего в действительности французского математика) и просили сообщить им, где можно подробнее прочитать о «функции Аполлинакса». И Аполлинакс и Нэнси, так же как и другие участники чаепития, — персонажи двух поэм Т. С. Эллиота «Мистер Аполлинакс» и «Нэнси», которыми открывается его сборник поэм 1909–1962 годов.

Кстати сказать, поэма «Мистер Аполлинакс» посвящена Бертрану Расселу. Когда Рассел в 1914 году посетил Гарвард, Эллиот присутствовал на его лекциях и они встречались за чашкой чая.

Эти встречи и послужили поводом для создания поэмы. Хилберт Донгль — это производное от Херберта Дингля, английского физика, утверждавшего, что если парадокс часов в теории относительности верен, то сама теория относительности неверна (см. главу о парадоксе часов в моей книге «Теория относительности для миллионов»[69]). Телониус Монк — это просто Телониус Монк.

Рассуждение Аполлинакса о грязных свитерах Нэнси заимствовано из небольшой поэмы Пита Хейна, имя которого уже неоднократно упоминалось в нашей книге. Парадокс с числами в вазе взят из «Математической смеси» Дж. Э. Литлвуда.[70] Он показывает, что при вычитании из трансфинитного числа «алеф-нуль» того же числа, умноженного на десять, может получиться нуль. Если перенумерованные карточки вынимать из вазы в последовательности 2, 4, 6, 8…, то в полдень в вазе останется счетное множество карточек, а именно все карточки с нечетными номерами. Точно так же можно вынуть бесконечно много карточек и оставить в вазе любое наперед заданное конечное число карточек. Если, например, вы хотите, чтобы в вазе осталось три числа, то нужно вынимать числа, начиная с 4. Вся ситуация в целом как нельзя лучше иллюстрирует то обстоятельство, что при вычитании из одного числа алеф-нуль другого такого же числа результат неопределен: в зависимости от природы тех или иных бесконечных множеств он может быть равен нулю, бесконечности или любому целому положительному числу.

Фокус с исчезающим кубиком основан на мало известном принципе, открытом Полом Кэрри. Подробное изложение этого принципа можно найти в главе «Исчезновение фигур» моей книги «Математические чудеса и тайны».[71]

Ответы

Фокус с плитками, показанный мистером Аполлинаксом, объясняется следующим образом. Когда все семнадцать плиток выложены в виде квадрата, стороны квадрата не абсолютно прямы, а слегка, на неуловимо малую величину, выпуклы. Когда один кубик взят из коробочки, а оставшиеся шестнадцать плиток перестроены так, что они снова образуют квадрат, его стороны чуть-чуть, на ту же неуловимо малую величину, вогнуты. Этим и объясняется уменьшение площади, покрываемой плитками. Чтобы еще больше усилить впечатление от фокуса, Аполлинакс, перестраивая плитки, незаметно вынул пятый кубик.

Предсказание, записанное Аполлинаксом, гласило: В левый карман вы положите карточку, на которой будет слово «нет».

Парадокс со знакопеременным рядом из четверок объясняется тем, что этот ряд не сходится и его сумма колеблется между 0 и 4. Для объяснения парадокса с вращением резинового шара и Вселенной необходимо более основательно погрузиться в теорию относительности.

Глава 45. ДЕВЯТЬ ЗАДАЧ

1. «Квадратобоязнь». В эту игру, которую мы для краткости будем называть KB Б, играют на шахматной доске размером 6x6 клеток.

Один игрок берет себе 18 белых фишек, другой — 18 черных. Каждый из игроков по очереди имеет право поставить одну фишку на любую свободную клетку доски, следя за тем, чтобы его фишки не оказались расположенными в вершинах квадрата. Квадрат может быть любого размера и наклонен под любым углом. Существует 105 различных способов построения квадратов; некоторые из них показаны на рис. 226.

Рис. 226 Четыре из 105 возможных квадратов при игре в «Квадратобоязнь».

Игрок одерживает победу, когда его противник вынужден построить один из 105 возможных квадратов. В КВБ можно играть на доске фишками или на листе бумаги с карандашом в руках. В последнем случае нужно начертить доску и отмечать ходы крестиками и ноликами.

В течение нескольких месяцев после того, как я придумал эту игру, меня не покидала уверенность в том, что KBБ не может закончиться вничью. Позднее Г. М. Мак-Лури, студент-математик из Оклахомского университета, доказал, что ничья все-таки возможна.

Разделив 36 клеток на две группы по 18 клеток в каждой так, чтобы никакие четыре клетки, входящие в одну и ту же группу, не образовывали вершин квадрата, попробуйте показать, каким образом игра в КВБ может закончиться вничью.

2. Головоломка с маневровым тепловозом. Составление железнодорожных составов нередко приводит к трудным задачам из области исследования операций. Задача с маневровым тепловозом, изображенная на рис. 227, обладает тем достоинством, что сочетает в себе простоту формулировки с удивительной трудностью решения.

Рис. 227 Головоломка из области исследования операций.

Тоннель достаточно широк для того, чтобы через него свободно проходил тепловоз, но узок для вагонов. Задача состоит в том, чтобы, пользуясь тепловозом, поменять местами верхний и нижний вагоны и вернуть тепловоз в исходное положение. Тепловоз может тянуть и толкать вагоны спереди и сзади. Вагоны, если это необходимо, можно сцеплять друг с другом.

Лучшим считается решение, при котором требуемый результат достигается наименьшим числом операций. Под «операцией» здесь понимается любой пробег тепловоза между двумя остановками (останавливается тепловоз перед тем, как начать двигаться в обратном направлении, при подходе к вагону, который нужно толкнуть, или когда от него отцепляют вагон, который до того он тянул за собой). Перевод стрелок операцией не считается.

При решении задачи удобно пользоваться наглядной «моделью»: положив на рисунок три монеты различного достоинства, передвигать их по рельсам. Не нужно лишь забывать, что через тоннель может проходить только монетка, изображающая тепловоз. На рис. 227 вагон стоит слишком близко от стрелок. При решении задачи можно считать, что оба вагона расположены намного дальше «к востоку» и на отрезке пути, отделяющем их от стрелок, может разместиться тепловоз с другим вагоном.

Переводить стрелки «на ходу» не разрешается. Например, нельзя переводить стрелку в тот момент, когда тепловоз только протолкнул через нее не сцепленный с ним вагон, чтобы вагон покатился по одной ветке, а тепловоз, не останавливаясь, продолжал движение по другой.

1 ... 83 84 85 86 87 88 89 90 91 ... 97
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Математические головоломки и развлечения - Мартин Гарднер.
Комментарии