Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С - Стивен Барретт
Шрифт:
Интервал:
Закладка:
/*----------------------------------------------------------------------*/
/*filename: debounced_swith.c */
/*осуществляет опрос 8 переключателей с программной защитой от дребезга */
/*выполняет специальные действия для каждого нажатого переключателя */
/*зажигает зеленый светодиод в разряде активизированного переключателя */
/*----------------------------------------------------------------------*/
/*подключаемые файлы*/
#include <912b32.h>
/*используемые функции*/
int process_valid_input(unsigned char input_value); //управление
//процессом опроса в реальном времени
void initialize_ports(void); //инициализация портов
void timer_init(void); //инициализация таймера
//глобальные переменные
int keep_going=1; //переменная цикла
unsigned char old_PORTB= 0xff; //предыдущее значение порта PORTB
unsigned char new_PORTB; //новое значение порта PORTB
void main{void) {
initialize_ports();
timer_init();
while(keep_going) {
new_PORTB=PORTB; //читать порт PORTB
if (new_PORTB != old_PORTB) {
//выполнять, если значение порта изменилось
swith(new_PORTB) {
case 0xFE: //переключатель PB0
if (process_valid_input(new_PORTB)) //процедура
//антидребезга
{ //выполнять действия, связанные
: //с нажатием клавиши PB0
:
PORTC = 0х01;//зажечь зеленый в разряде PB0
keep_going = 1;
}
break;
case 0xFD: // переключатель PB01
if (process_valid_input(new_PORTB)) // процедура
// антидребезга
{ //выполнять действия, связанные
: //с нажатием клавиши PB1
PORTC = 0х02; //зажечь зеленый в разряде PB1
keep_going = 1;
}
break;
case 0x7F: // переключатель PB7
if (process_valid_input(new_PORTB)) // процедура
//антидребезга
{ //выполнять действия, связанные
: //с нажатием клавиши PB7
PORTC = 0х80; //зажечь зеленый в разряде PB7
keep_going = 1;
}
break;
default:
; //аll other cases
} //окончание распозвания, какая клавиша нажата (switch(new_PORTB))
} //окончание обработки нажатой клавиши (if new_PORTB)
old_PORTB = new_PORTB; //обновить PORTB
} //окончание (while(keep_going))
} //окончание (main)
/*-----------------------------------------------------------------*/
/* Функция void initialize_ports устанавливает режим работы портов */
/*-----------------------------------------------------------------*/
void initialize_ports(void) {
DDRC=0xff; //порт PORTC на вывод
PORTC=0x00; //выходы порта PORTC в 0, зажгутся красные светодиоды
DDRB=0x00; //порт PORTB на ввод
}
/*--------------------------------------------------------------------*/
/* process_valid_input: проверка стабильности PORTB в течение периода */
/* переполнения таймера */
/*--------------------------------------------------------------------*/
int process_valid_input(unsigned char portx) {
int valid_input; //флаг результата опроса порта
int int_value; //время входа в процедуру
valid_input = TRUE; //установить флаг
int_value = TCNT; //читать текущий момент времени
while (int_value != TCNT) //повторять пока значения времени снова не
//сравняются
{
if (portx==PORTB) //порт PORTB остается стабильным
valid_input = TRUE;
else //порт PORTB изменил состояние
valid_input = FALSE;
if (!valid_input) //если порт изменил состояние, то выйти
//из цикла
break;
}
return valid_input;
}
/*------------------------------------------------------------------------*/
/* Функция timer_init инициализирует таймер. Частота системной шины равна */
/*8*МГц */
/*------------------------------------------------------------------------*/
void timer_init(void) {
TMSK1 = 0х00; //запретить прерывания
TMSK2 = 0х02; //частота тактировании 2 МГц
TSCR = 0х80; //разрешить работу модуля таймера
}
/*-------------------------------------------------------------------------*/
5.6. Жидкокристаллические индикаторы
В этом разделе мы подробно рассмотрим, как подключить жидкокристаллический индикатор к МК 68HC12. Мы начнем с краткого обзора принципа действия ЖК индикаторов. Далее изучим реальный однострочный символьный индикатор на 16 знакомест со встроенным контроллером управления. Рассмотрим, как выполнить аппаратное подключение этого индикатора к МК, а затем приведем пример программы управления.
5.6.1. Краткие сведения о жидкокристаллических индикаторах
Жидкокристаллический индикатор — почти идеальное устройство отображения информации. Этот тип индикаторов использует для своей работы те же напряжения, что и микроконтроллеры, но при этом потребляет энергию на несколько порядков меньшую, чем светодиодные индикаторы. Именно поэтому жидкокристаллические (далее ЖК) индикаторы нашли чрезвычайно широкое применение в переносных устройствах с автономным питанием. В электронных часах, калькуляторах и стационарных телефонах принято использовать монохромные ЖК индикаторы, в то время как современные мобильные телефоны, фотоаппараты и видеокамеры немыслимы без малогабаритного цветного ЖК-дисплея. По способу отображения информации ЖК индикаторы также подразделяются на цифро-буквенные и графические.
Для понимания технологических особенностей создания современных ЖК индикаторов и дисплеев следует коротко остановиться на основных свойствах жидких кристаллов. Жидкие кристаллы представляют собой почти прозрачные субстанции, проявляющие одновременно свойства кристалла и жидкости. Есть две главные особенности жидких кристаллов, благодаря которым возможно создание на их основе устройств отображения информации: способность молекул жидких кристаллов переориентироваться во внешнем электрическом поле и изменять поляризацию светового потока, проходящего через их слои.
Основой ЖК индикатора являются две параллельные стеклянные пластины с нанесенными на них поляризационными пленками. Различают верхний и нижний поляризаторы, сориентированные перпендикулярно друг другу. На стеклянные пластины в тех местах, где в дальнейшем будет формироваться изображение, наносится прозрачная металлическая окисная пленка, которая в дальнейшем служит электродами. На внутреннюю поверхность стекол и электроды наносятся полимерные выравнивающие слои, которые затем полируются, что способствует появлению на их поверхности, соприкасающейся с жидкими кристаллами, микроскопических продольных канавок. Пространство между выравнивающими слоями заполняют жидкокристаллическим веществом. В результате молекулы жидких кристаллов выстраиваются в направлении полировки полимерного слоя. Направления полировки верхнего и нижнего слоев полимера перпендикулярны (подобно ориентации поляризаторов). Это нужно для предварительного "скручивания" слоев молекул жидких кристаллов между стеклами на 90°. Когда напряжение на управляющие электроды не подано, поток света, пройдя через нижний поляризатор, двигается через слои жидких кристаллов, которые плавно меняют его поляризацию, поворачивая её на угол 90°. В результате поток света после выхода из ЖК материала беспрепятственно проходит через верхний поляризатор (сориентированный перпендикулярно нижнему) и попадает к наблюдателю. Никакого формирования изображения не происходит. При подаче напряжения на электроды между ними создается электрическое поле, что вызывает переориентацию молекул жидких кристаллов. Молекулы стремятся выстроиться вдоль силовых линий поля в направлении от одного электрода к другому. Вследствие этого пропадает эффект «скручивания» поляризованного света, под электродом возникает область тени, повторяющая его контуры. Создается изображение, формируемое светлой фоновой областью и темной областью под включенным электродом. Путем варьирования контуров площади, занимаемой электродом, можно формировать самые различные изображения: буквы, цифры, иконки и пр. Так создаются символьные ЖКИ. А при создании массива электродов (ортогональной матрицы) можно получить графический ЖКИ с разрешением, определяемым количеством задействованных электродов