Категории
Самые читаемые
onlinekniga.com » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ФО) - БСЭ БСЭ

Большая Советская Энциклопедия (ФО) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (ФО) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 85 86 87 88 89 90 91 92 93 ... 109
Перейти на страницу:

  Для изготовления Ф. п. ф. из твёрдых ФПК используют тонкие алюминиевые или стальные листы с нанесённым на них слоем ФПК толщиной 0,4–0,5 мм. Процесс получения Ф. п. ф. состоит из экспонирования негатива, вымывания незаполимеризовавшегося слоя в пробельных участках и сушки готовой формы.

  Для изготовления Ф. п. ф. из жидких ФПК в специальное устройство (например, кювета из прозрачного бесцветного стекла) помещают негатив, закрывают его прозрачной тонкой бесцветной плёнкой и заливают ФПК. После этого производят экспонирование с двух сторон, в результате чего со стороны негатива образуются заполимеризовавшиеся (твёрдые) печатающие элементы, а с противоположной стороны – подложка формы. Затем струей растворителя вымывают незаполимеризовавшуюся композицию с пробельных элементов и высушивают готовую форму.

  Ф. п. ф. (часто называемые полноформатными гибкими формами) применяются для печатания журналов и книг, в том числе с цветными иллюстрациями. Они просты в изготовлении, имеют небольшую массу, высокую тиражеустойчивость (до 1 млн. оттисков), позволяют широко использовать фотонабор и не требуют больших затрат времени на подготовительные операции при печатании тиража.

  Лит.: Синяков Н. И., Технология изготовления фотомеханических печатных форм, 2 изд., М., 1974.

  Н. Н. Полянский.

Фотопроводимость

Фотопроводи'мость, фоторезистивный эффект, увеличение электропроводности полупроводника под действием электромагнитного излучения. Впервые Ф. наблюдалась в Se У. Смитом (США) в 1873. Обычно Ф. обусловлена увеличением концентрации носителей тока под действием света (концентрационная Ф.). Она возникает в результате нескольких процессов: фотоны «вырывают» электроны из валентной зоны и «забрасывают» их в зону проводимости (рис. 1 ), при этом одновременно возрастает число электронов проводимости и дырок (собственная Ф.); электроны из заполненной зоны забрасываются на свободные примесные уровни – возрастает число дырок (дырочная примесная Ф.); электроны забрасываются с примесных уровней в зону проводимости (электронная примесная Ф.). Возможно комбинированное возбуждение Ф. «собственным» и «примесным» светом: «собственное» возбуждение в результате последующих процессов захвата носителей приводит к заполнению примесных центров и, следовательно, к появлению примесной Ф. (индуцированная примесная Ф.). Концентрационная Ф. может возникать только при возбуждении достаточно коротковолновым излучением, когда энергия фотонов превышает либо ширину запрещенной зоны (в случае собственной и индуцированной Ф.), либо расстояние между одной из зон и примесным уровнем (в случае электронной или дырочной примесной Ф.).

  В той или иной степени Ф. обладают все неметаллические твёрдые тела. Наиболее изучена и широко применяется в технике Ф. полупроводников Ge, Si, Se, CdS, CdSe, InSb, GaAs, PbS и др. Величина концентрационной Ф. пропорциональна квантовому выходу h (отношению числа образующихся носителей к общему числу поглощённых фотонов) и времени жизни неравновесных (избыточных) носителей, возбуждаемых светом (фотоносителей). При освещении видимым светом h обычно меньше 1 из-за «конкурирующих» процессов, приводящих к поглощению света, но не связанных с образованием фотоносителей (возбуждение экситонов, примесных атомов, колебаний кристаллической решётки и др.). При облучении вещества ультрафиолетовым или более жёстким излучением h > 1, т.к. энергия фотона достаточно велика, чтобы не только вырвать электрон из заполненной зоны, но и сообщить ему кинетическую энергию, достаточную для ударной ионизации . Время жизни носителя (т. е. время, которое он в среднем проводит в свободном состоянии) определяется процессами рекомбинации. При прямой (межзонной) рекомбинации фотоэлектрон сразу переходит из зоны проводимости в валентную зону. В случае рекомбинации через примесные центры электрон сначала захватывается примесным центром, а затем попадает в валентную зону. В зависимости от структуры материала, степени его чистоты и температуры время жизни может меняться в пределах от долей сек до 10-8 сек.

  Зависимость Ф. от частоты излучения определяется спектром поглощения полупроводника. По мере увеличения коэффициента поглощения Ф. сначала достигает максимума, а затем падает. Спад Ф. объясняется тем, что при большом коэффициенте поглощения весь свет поглощается в поверхностном слое проводника, где очень велика скорость рекомбинации носителей (поверхностная рекомбинация, рис. 2 ).

  Возможны и др. виды Ф., не связанные с изменением концентрации свободных носителей. Так, при поглощении свободными носителями длинноволнового электромагнитного излучения, не вызывающего межзонных переходов и ионизации примесных центров, происходит увеличение энергии («разогрев») носителей, что приводит к изменению их подвижности и, следовательно, к увеличению электропроводности. Такая подвижностная Ф. убывает при высоких частотах и перестаёт зависеть от частоты при низких частотах. Изменение подвижности под действием излучения может быть обусловлено не только увеличением энергии носителей, но и влиянием излучения на процессы рассеяния электронов кристаллической решёткой.

  Изучение Ф. – один из наиболее эффективных способов исследования свойств твёрдых тел . Явление Ф. используется для создания фоторезисторов , чувствительных и малоинерционных приёмников излучения в очень широком диапазоне длин волн – от g-лучей до диапазона сверхвысоких частот .

  Лит.: Рывкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Стильбанс Л. С., Физика полупроводников, М., 1967; см. также лит. при ст. Полупроводники .

  Э. М. Эпштейн.

Рис. 2. Характерный вид спектра собственной фотопроводимости. Резкий спад в длинноволновой области отвечает т. н. краю поглощения — выключению собственного поглощения, когда энергия фотона становится меньше ширины запрещенной зоны; плавный спад в области малых длин волн обусловлен поглощением света у поверхности.

Рис. 1. к ст. Фотопроводимость.

Фотопьезоэлектрический эффект

Фотопьезоэлектри'ческий эффе'кт, возникновение фотоэдс в однородном полупроводнике при одновременном одноосном сжатии и освещении.

Фотореактивация

Фотореактива'ция, уменьшение повреждающего действия ультрафиолетового излучения на живые клетки при последующем воздействии на них ярким видимым светом. Ф. открыта в 1948 И. Ф. Ковалевым (СССР), А. Келнером и Р. Дульбекко (США) в результате опытов, проведённых на инфузориях парамециях, коловратках, конидиях грибов, бактериях и бактериофагах. В основе Ф. лежит ферментативное расщепление на мономеры пиримидиновых димеров, образующихся в ДНК под влиянием ультрафиолетового излучения. Ф. возникла в процессе эволюции как защитное приспособление от губительного действия УФ-компонента солнечного излучения и является одной из важнейших форм репарации живых организмов от повреждений их генетического аппарата.

  Лит.: Ковалев И. Ф., Влияние видимого участка спектра лучистой энергии на динамику патологического процесса в клетке, поврежденной ультрафиолетовыми лучами, в кн.: Учёные записки Украинского экспериментального института глазных болезней, т. 1, Од., 1949; Восстановление клеток от повреждений, пер. с англ., М., 1963; Смит К. и Хэнеуолт Ф., Молекулярная фотобиология, пер. с англ., М., 1972.

Фоторегистрирующая установка

Фоторегистри'рующая устано'вка, фотохронограф, прибор для регистрации развития быстропротекающих процессов (взрыв, горение, детонация, электрический разряд и т.п.) в некотором заданном направлении. О принципах действия наиболее употребительных типов Ф. у. см. Развёртка оптическая .

Фоторезист

Фоторези'ст (от фото... и англ. resist – сопротивляться, препятствовать), полимерный светочувствительный слой, нанесённый на поверхность полупроводниковой пластины с окисной плёнкой. Ф. используются в полупроводниковой электронике и микроэлектронике (см., например, Планарная технология ) для получения на пластине «окон» заданной конфигурации, открывающих доступ к ней травителя. В результате экспонирования Ф. через наложенный на него стеклянный шаблон нужного рисунка ультрафиолетовым излучением (иногда электронным лучом) свойства его меняются: либо растворимость Ф. резко уменьшается (негативный Ф.), либо он разрушается и становится легко удалимым (позитивный Ф.). Последующая обработка растворителем образует в Ф. «окна» на необлучённых участках негативного Ф. или облученных участках позитивного Ф. Типичные Ф.: негативные – слои поливинилового спирта с солями хромовых кислот или эфирами коричной кислоты , слои циклизованного каучука с добавками, вызывающими «сшивание» макромолекул под действием света; позитивные – феноло- или крезолоформальдегидная смола с о -нафтохинондиазидом. См. также Фотолитография .

1 ... 85 86 87 88 89 90 91 92 93 ... 109
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Большая Советская Энциклопедия (ФО) - БСЭ БСЭ.
Комментарии