Категории
Самые читаемые
onlinekniga.com » Детская литература » Детская образовательная литература » Биология. Общая биология. Базовый уровень. Учебник для 10–11 класс - Екатерина Захарова

Биология. Общая биология. Базовый уровень. Учебник для 10–11 класс - Екатерина Захарова

Читать онлайн Биология. Общая биология. Базовый уровень. Учебник для 10–11 класс - Екатерина Захарова

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 68
Перейти на страницу:

Рис. 15. Образование пептидной связи между двумя аминокислотами

Рис. 16. Строение белковой молекулы: А – первичная; Б – вторичная; В – третичная; Г – четвертичная структуры

Может существовать четвертичная структура – объединение нескольких белковых глобул или фибрилл в единый рабочий комплекс. Так, например, сложная молекула гемоглобина состоит из четырех полипептидов, и только в таком виде она может выполнять свою функцию.

Функции белков. Огромное разнообразие белковых молекул подразумевает столь же широкое разнообразие их функций (рис. 17, 18). Около 10 тыс. белков-ферментов служат катализаторами химических реакций. Они обеспечивают слаженную работу биохимического ансамбля клеток живых организмов, ускоряя во много раз скорость химических реакций.

Рис. 17. Основные группы белков

Вторая по величине группа белков выполняет структурную и двигательную функции. Белки участвуют в образовании всех мембран и органоидов клетки. Коллаген входит в состав межклеточного вещества соединительной и костной ткани, а основным компонентом волос, рогов и перьев, ногтей и копыт является белок кератин. Сократительную функцию мышц обеспечивают актин и миозин.

Транспортные белки связывают и переносят различные вещества и внутри клетки, и по всему организму.

Рис. 18. Синтезированные белки или остаются в клетке для внутриклеточного применения, или выводятся наружу для использования на уровне организма

Белки-гормоны обеспечивают регуляторную функцию.

Например, соматотропный гормон, вырабатываемый гипофизом, регулирует общий обмен веществ и влияет на рост. Недостаток или избыток этого гормона в детском возрасте приводит, соответственно, к развитию карликовости или гигантизма.

Чрезвычайно важна защитная функция белков. При попадании в организм человека чужеродных белков, вирусов или бактерий на защиту встают иммуноглобулины – защитные белки. Фибриноген и протромбин обеспечивают свертываемость крови, предохраняя организм от кровопотери. Есть у белков и защитная функция несколько иного рода. Многие членистоногие, рыбы, змеи и другие животные выделяют токсины – сильные яды белковой природы. Белками являются и самые сильные микробные токсины, например ботулиновый, дифтерийный, холерный.

При нехватке пищи в организме животных начинается активный распад белков до конечных продуктов, и тем самым реализуется энергетическая функция этих полимеров. При полном расщеплении 1 г белка выделяется 17,6 кДж энергии.

Денатурация и ренатурация белков. Денатурация – это утрата белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жестких условиях – и первичной структуры (рис. 19). В результате денатурации белок теряет способность выполнять свою функцию. Причинами денатурации могут быть высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжелых металлов и органических растворителей.

Рис. 19. Денатурация белка

Дезинфицирующее свойство этилового спирта основано на его способности вызывать денатурацию бактериальных белков, что приводит к гибели микроорганизмов.

Денатурация может быть обратимой и необратимой, частичной и полной. Иногда, если воздействие денатурирующих факторов оказалось не слишком сильным и разрушение первичной структуры молекулы не произошло, при наступлении благоприятных условий денатурированный белок может вновь восстановить свою трехмерную форму. Этот процесс называется ренатурацией, и он убедительно доказывает зависимость третичной структуры белка от последовательности аминокислотных остатков, т. е. от его первичной структуры.

Вопросы для повторения и задания

1. Какие химические соединения называют углеводами?

2. Что такое моно– и дисахариды? Приведите примеры.

3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?

4. Из каких органических соединений состоят белки?

5. Как образуются вторичная и третичная структуры белка?

6. Назовите известные вам функции белков.

7. Что такое денатурация белка? Что может явиться причиной денатурации?

2.6. Органические вещества. Нуклеиновые кислоты

Вспомните!

Почему нуклеиновые кислоты относят к гетерополимерам?

Что является мономером нуклеиновых кислот?

Какие функции нуклеиновых кислот вам известны?

Какие свойства живого определяются непосредственно строением и функциями нуклеиновых кислот?

В 1868 г. швейцарский врач и биохимик Иоганн Фридрих Мишер выделил из ядер погибших лейкоцитов вещество, обладающее кислыми свойствами. Ученый назвал это вещество нуклеином (от лат. nucleus – ядро), считая, что оно содержится только в ядрах клеток. Позднее эти органические соединения были обнаружены также в цитоплазме, митохондриях, пластидах, но данное им название – нуклеиновые кислоты – сохранилось.

Значение нуклеиновых кислот в клетке чрезвычайно велико. Особенность их строения позволяет им выполнять функции хранения, реализации и передачи наследственной информации, т. е. практически определять основные свойства живого. Поэтому изучение структуры нуклеиновых кислот очень важно для понимания принципов функционирования живых организмов.

Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), присутствующие во всех клетках. Исключением являются вирусы – неклеточная форма жизни, некоторые из которых содержат исключительно РНК, а другие – только ДНК.

Дезоксирибонуклеиновая кислота (ДНК). В середине XX в., когда роль ДНК в передаче признаков из поколения в поколение уже была доказана, структура и организация этих биополимеров была окончательно еще неясна. Было известно, что молекулы ДНК состоят из мономеров – нуклеотидов, каждый из которых содержит остаток фосфорной кислоты, сахар – дезоксирибозу и одно из четырех азотистых оснований – аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц); т. е. существует четыре типа нуклеотидов (рис. 20). Но вопрос о том, есть ли какая-нибудь закономерность в расположении этих мономеров в цепи ДНК, оставался открытым.

В начале 50-х гг. XX в. профессор биохимии Колумбийского университета Эрвин Чаргафф определил состав ДНК с гораздо большей точностью по сравнению с предыдущими исследованиями. Он обнаружил, что содержание четырех типов оснований в ДНК вовсе не соответствует соотношению 1:1:1:1, как предполагали ранее. Особенно поразило исследователя то, что количество аденина (А) всегда было равно количеству тимина (Т), а содержание гуанина (Г) всегда было равно содержанию цитозина (Ц). Это не могло быть простым совпадением. Например, в ДНК человека оказалось 30 % А, 30 % Т, 20 % Г и 20 % Ц. Причем выяснилось, что состав ДНК клеток качественно и количественно неодинаков у разных организмов, но идентичен в органах и тканях одного и того же организма. Это еще раз подтверждало, что именно ДНК является химической основой наследственности.

Рис. 20. Общая формула нуклеотида (А) и четыре типа нуклеотидов ДНК (Б)

Рис. 21. Образование водородных связей между комплементарными основаниями двух цепей ДНК

Эта закономерность соотношения количества аденина и тимина (А-Т) и гуанина и цитозина (Г-Ц) получила название правило Чаргаффа и послужила ключом к разгадке структуры ДНК.

В 1953 г. физик Ф. Крик и генетик Дж. Уотсон, работавшие в лаборатории Кембриджского университета, расшифровали пространственную структуру ДНК. Оказалось, что дезоксирибонуклеиновая кислота состоит из двух параллельных полинуклеотидных цепей, образующих правозакрученную двойную спираль. Но, пожалуй, самым интересным свойством этой структуры оказалась комплементарность (взаимодополнительность) обеих цепей: напротив основания А одной полинуклеотидной цепи в другой цепи всегда стоит Т, напротив Т-А, напротив Г-Ц, а напротив Ц-Г. Это строгое соответствие объяснило закономерность, открытую Чаргаффом. Цепи ДНК не просто располагаются параллельно друг другу, между членами пар А-Т и Г-Ц образуются водородные связи, которые удерживают цепи вместе и обеспечивают правильное расположение мономеров (рис. 21). Именно благодаря этим связям ДНК является единственной молекулой, способной к самоудвоению.

Но почему именно А-Т и Г-Ц? Почему не могут располагаться друг напротив друга, например, А и Ц? Дело в том, что в существующих комбинациях основания оптимально «подходят» друг другу: А соединяется с Т двумя водородными связями, а Г с Ц – тремя. Одинаковые по размеру основания Ц и Т гораздо меньше оснований Г и А. Пара Т-Ц была бы слишком мала, а А-Г – велика, и спиральная «лестница» ДНК искривилась бы, имея то слишком длинные, то слишком короткие «перекладины».

1 ... 5 6 7 8 9 10 11 12 13 ... 68
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Биология. Общая биология. Базовый уровень. Учебник для 10–11 класс - Екатерина Захарова.
Комментарии