Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » Звезды: их рождение, жизнь и смерть - Иосиф Шкловский

Звезды: их рождение, жизнь и смерть - Иосиф Шкловский

Читать онлайн Звезды: их рождение, жизнь и смерть - Иосиф Шкловский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 95 96 97 98 99 100 101 102 103 ... 108
Перейти на страницу:

В то время как источники первого типа находятся вблизи галактической плоскости, источники второго типа могут быть достаточно удалены от нее.

Не исключено, что обе разновидности источникой происходят от тесных двойных систем с массивными компонентами, но в то время как у источников типа а) массы компонент сходны, у источников типа б) отношение масс больше 3. Расчеты показывают, что если у более массивной компоненты M1 > 10M, то после перетекания масс останется компактная гелиевая звезда с массой 3M, которая может взорваться как сверхновая и «превратиться», таким образом, в нейтронную звезду. В противном случае в процессе эволюции могут образоваться только белые карлики. Если отношение масс M1/M2 > 3, то в процессе эволюции, как оказывается, большая часть массы системы покидает ее. При взрыве сверхновой в такой системе в большинстве случаев пары распадаются.

Характерной особенностью рентгеновских источников является наличие в ряде случаев наряду с орбитальными периодами весьма коротких периодов пульсации. Выше мы уже подробно говорили о 4,84-секундном периоде пульсаций у Центавра Х-3 и 1,24-секундном — у Геркулеса Х-1. В 1975 г. было сделано важное открытие «длинных» периодов пульсаций у рентгеновских источников. Например, у источника 0940—40, принадлежащего к типу а) и имеющего орбитальный период около 9 суток, найден пульсационный период в 283 с. Несколько длинных пульсационных периодов было найдено у так называемых «новых» (или «временных») рентгеновских источников[ 58 ]. Довольно длинный пульсационный период (405 с) был обнаружен у источника А 1118—61. Самый длинный период у известных к 1977 г. источников равен 31 минуте. Скорее всего продолжительные периоды пульсаций есть следствие торможения вращения нейтронной звезды намагниченной плазмой, в которую «погружена» двойная система. Возможно, что конкретным механизмом такого торможения является генерация вращающейся нейтронной звездой звуковых волн, а также обычная вязкость. Таким образом, период вращения нейтронной звезды — рентгеновского пульсара — как бы «подстраивается» к физическим характеристикам двойной системы, в которой он находится (период орбитального движения, мощность звездного ветра от «оптической» компоненты и пр.). Наблюдаемые вариации периодов вращения пульсаров скорее всего вызваны, в первую очередь, вариациями мощности звездного ветра, «питающего» путем аккреции нейтронную звезду.

Долгие годы, несмотря на ряд попыток, никак не удавалось доказать двойственность самого яркого рентгеновского источника Скорпион Х-1. Это оказалось очень трудной задачей, так как на ожидаемое регулярное изменение блеска оптической звезды, отождествляемой с этим источником, накладывались беспорядочные изменения с большой амплитудой. В то же время никакой периодичности в рентгеновском излучении (типа той, которая наблюдается у Центавра Х-3 и Геркулеса Х-1) у Скорпиона Х-1 не было обнаружено. Последнее обстоятельство, конечно, не является аргументом против двойственности этого источника: ведь вполне возможно, что плоскость орбиты наклонена под большим углом к лучу зрения!

Только в 1975 г. американским астрономам из анализа оптических наблюдений удалось найти орбитальный период Скорпиона Х-1, оказавшийся равным 0,787 ± 0,006 суток. Масса каждой из компонент меньше 2M, а скорость системы 145 км/с, т. е. очень велика.

Было также показано, что яркий источник Лебедь Х-2 представляет собой двойную систему с малой массой (MO 2M, MX 1M), сходную со Скорпионом Х-1 и Геркулесом Х-1. Орбитальный период Лебедя Х-2 T = 0,86 дня, а расстояние 2 кпс.

Особый интерес представляет проблема радиоизлучения рентгеновских звезд. Несколько таких объектов (например, Скорпион Х-1, Лебедь Х-1) оказались источниками очень слабого, переменного радиоизлучения. Заметим, однако, что само по себе это не является проблемой. В последние годы радиоизлучение было обнаружено от нескольких тесных двойных систем, в частности, от Алголя и Лиры. В таких системах мощные потоки газовых струй должны приводить к значительному радиоизлучению. Однако в сентябре 1972 г. наблюдалось уже не совсем обычное явление. Поток очень слабого радиоизлучения от рентгеновской звезды Лебедь Х-3 скачком увеличился в 2000 раз! Вспышка длилась несколько дней, спустя две недели она повторилась. Во время вспышки радиоисточник Лебедь Х-3 оказался одним из самых ярких на небе на сантиметровых волнах. Это позволило, в частности, по «пропечатавшимся» в его спектре межзвездным радиолиниям поглощения 21 и 18 см определить расстояние до него, оказавшееся около 7000 пс. Мощный всплеск радиоизлучения объясняется выбросом облака релятивистских частиц и плазмы. Странно, что рентгеновское излучение этого источника не претерпело при этом никаких изменений. По-видимому, детальное изучение рентгеновских звезд принесет астрономам еще много неожиданностей.

В 1978 г. внимание астрономов было сконцентрировано на совершенно уникальном объекте SS 433. Поразительной особенностью этого звездообразного источника является наличие в его спектре водородных и гелиевых эмиссионных линий, длины волн которых меняются с периодом 164 дня. Каждая «стационарная» линия водорода и гелия имеет по обе стороны от себя две «подвижные» линии, сильно смещенные в красную и фиолетовую части спектра. На рис. 23.12 приведена кривая лучевых скоростей. Обращает на себя внимание ее огромная амплитуда. По характерной кривой лучевых скоростей не представляет особого труда построить кинематическую модель SS433. Она сводится к представлению, что из этого источника в двух противоположных направлениях выбрасываются две газовые струи с огромной скоростью v = 0,27c или 81 000 км/с, причем ось, вдоль которой происходит выбрасывание газа, прецессирует с периодом 164 дня. Этот звездообразный объект находится внутри давно уже известной радиотуманности W 50 — явном остатке сверхновой, имеющем форму неполной оболочки. Объект SS433 является источником рентгеновского излучения, так же как и радиотуманность W 50.

Рис. 23.12: Часть спектра SS 433, на которой видна очень интенсивная «несмещенная» линия Н ( = 6563 Å), с обеих сторон от которой видны две компоненты той же линии с сильным красным ( 7400—7500 Å) и фиолетовым ( 6100—6200 Å) смещением. Спектры получены в течение грех последовательных ночей. Отчетливо видно прогрессивное смещение красной и фиолетовой компонент.

Дальнейшие оптические наблюдения показали, что блеск SS 433 меняется с периодом 13,1 суток. Эти изменения объясняются двойственностью объекта, В этом случае мы наблюдаем в оптических лучах своеобразную «затменную переменную» (см. рис. 23.13), одной компонентой которой является массивная горячая голубая звезда — сверхгигант, другой — плотный, горячий газовый диск, окружающий вторую, весьма компактную компоненту— нейтронную звезду или черную дыру. Этот диск образуется путем перетекания мощной струи газа от звездной компоненты через лагранжеву точку L (см. рис. 14.1). В отличие от других аналогичных систем (например, Лебедь Х-1, Центавр Х-3), скорость перетекания очень велика — до 10-4M/год— в десятки тысяч раз больше, чем в системе Лебедь Х-1. Такая фаза «быстрого перетекания» соответствует «сверхкритической» аккреции и длится сравнительно недолго, 104 лет. При сверхкритической аккреции почти весь перетекающий газ выталкивается из диска силой светового давления. Это и является причиной вытекания двух струй в направлениях, перпендикулярных к плоскости газового диска (рис. 23.14). Так как эта фаза эволюции является кратковременной, число объектов, подобных SS 433, должно быть в нашей Галактике весьма незначительным.

Рис. 23.13: Кривая лучевых скоростей для «красной» и «фиолетовой» компонент SS 433. По оси абсцисс внизу отложены даты в юлианских днях, вверху — даты обычного календаря.Рис. 23.14: Рентгеновское изображение SS 433, полученное на обсерватории «Эйнштейн». Около 10% всего излучения исходят от двух вытянутых струй, симметрично расположенных по отношению к источнику.

Радиоинтерференционные наблюдения выявили излучение струй и убедительно доказали прецессионный характер их движения. С этими струями также связано рентгеновское излучение W 50. Изучение удивительных явлений, происходящих в SS 433, позволило лучше понять характер эволюции массивных двойных систем и связанных с ними рентгеновских и радиоисточников.

1 ... 95 96 97 98 99 100 101 102 103 ... 108
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Звезды: их рождение, жизнь и смерть - Иосиф Шкловский.
Комментарии