Большая Советская Энциклопедия (ЭЛ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Лит.: Шафферт Р., Электрофотография, пер. с англ., М., 1968; Гренишин С. Г., Электрофотографический процесс, М., 1970; Процессы и аппараты электрофотографии, Л., 1972.
Ю. А. Черкасов.
Электрофотополупроводниковая бумага
Электрофотополупроводнико'вая бума'га, электрофотографическая бумага, предназначена для изготовления копий при электрофотографическом копировании . Э. б. г представляет собой электропроводную баритовую бумагу — основу, покрытую с одной стороны тонким слоем (20—100 мкм ) фотополупроводника, который становится светочувствительным после зарядки до потенциала в несколько сотен в. В состав фотополупроводникового слоя чаще всего входит ZnO в чистом виде либо сенсибилизированная красителями, например эозином. Помимо ZnO, могут применяться также окислы, иодиды, селениды, сульфиды и теллуриды различных металлов. В качестве связующего используют поливинил-бутираль, производные ацилгидразона, оксадизола и др., синтетические и естественные смолы и т. п.
Фотографические свойства Э. б. характеризуются главным образом зарядным потенциалом и светочувствительностью. У несенсибилизированной Э. б. с фотополупроводниковым слоем на основе ZnO светочувствительность порядка 0,04 ед. ГОСТа; у сенсибилизированной Э. б. светочувствительность 0,5—1 ед. ГОСТа. Разрешающая способность копий на Э. б. зависит от конструкции аппарата, толщины фотополупроводникового слоя и способа его обработки (проявления); обычно лежит в пределах 3—40 линий/мм .
Лит.: Слуцкин А. А., Шеберстов В. И., Копировальные процессы и материалы репрографии и малой полиграфии, М., 1971.
Л. В. Алферов.
Электрофреза
Электрофреза', с.-х. орудие для обработки почвы и заделки в неё удобрений в теплицах, парниках и на парниковых участках. В СССР выпускают самоходную Э. ФС-0.7А, основными узлами которой являются электродвигатель мощностью 3 кВт, редуктор с муфтой включения, ротор диаметром 420 мм с рабочими органами — ножами. Частота вращения ротора 200 061 мин, ширина захвата Э. 0,7 м, глубина обработки до 22 см, производительность 600 м 2 /ч.
Электрохемилюминесценция
Электрохемилюминесце'нция, люминесценция , возникающая при моляризации ион-радикалов, образующихся во время электролиза раствора активатора (изобензофуран, изоиндол и др.) в сопровождающем электролите (димстилформамид и др.); возбуждённые молекулы активатора, образующиеся в результате моляризации их ион-радикалов, возвращаются в основное состояние, испуская кванты света. Э. может быть использована для создания индикаторных устройств: при возбуждении люминофора переменным электрическим полем свечение сосредоточено вблизи электрода; применяя электроды специальной формы, можно создавать т. о. светящиеся цифры, буквы и т. д. (См. статьи Электролюминесценция , Хемилюминесценция . )
Электрохимическая обработка
Электрохими'ческая обрабо'тка, см. в ст. Электрофизические и электрохимические методы обработки .
Электрохимическая поляризация
Электрохими'ческая поляриза'ция, см. Поляризация электрохимическая .
Электрохимические методы анализа
Электрохими'ческие ме'тоды ана'лиза, совокупность методов качественного и количественного анализа, основанных на электрохимических явлениях, происходящих в исследуемой среде или на границе раздела фаз и связанных с изменением структуры, химического состава или концентрации анализируемого вещества. Э. м. а. делятся на пять основных групп: потенциометрию, вольтамперометрию, кулонометрию, кондуктометрию и диэлектрометрию.
Потенциометрия объединяет методы, основанные на измерении эдс обратимых электрохимических цепей, когда потенциал рабочего электрода близок к равновесному значению (см. Электродный потенциал ). Потенциометрия включает редоксметрию (см. Оксидиметрия ), ионометрию и потенциометрическое титрование.
Вольтамперометрия основана на исследовании зависимости тока поляризации от напряжения, прикладываемого к электрохимической ячейке, когда потенциал рабочего электрода значительно отличается от равновесного значения (см. Поляризация электрохимическая ). По разнообразию методов вольтамперометрия — самая многочисленная группа из всех Э. м. а., широко используемая для определения веществ в растворах и расплавах (например, полярография , амперометрия).
Кулонометрия объединяет методы анализа, основанные на измерении количества вещества, выделяющегося на электроде в процессе электрохимической реакции в соответствии с Фарадея законами . При кулонометрии потенциал рабочего электрода отличается от равновесного значения. Различают потенциостатическую и гальваностатическую кулонометрию, причём последняя включает прямой и инверсионный методы, электроанализ и кулонометрическое титрование.
К кондуктометрии относятся методы, в которых измеряют электропроводность электролитов (водных и неводных растворов, коллоидных систем, расплавов, твёрдых веществ). Кондуктометрический анализ основан на изменении концентрации вещества или химического состава среды в межэлектродном пространстве; он не связан с потенциалом электрода, который обычно близок к равновесному значению. Кондуктометрия включает прямые методы анализа (используемые, например, в солемерах ) и косвенные (например, в газовом анализе ) с применением постоянного или переменного тока (низкой и высокой частоты), а также хронокондуктометрию, низкочастотное и высокочастотное титрование.
Диэлектрометрия объединяет методы анализа, основанные на измерении диэлектрической проницаемости вещества, обусловленной ориентацией в электрическом поле частиц (молекул, ионов), обладающих дипольным моментом. Методы диэлектрометрии применяют для контроля чистоты диэлектриков, например для определения малых количеств влаги. Диэлектрометрическое титрование используют для анализа растворов.
Лит.: Галюс 3., Теоретические основы электрохимического анализа, пер. с польск., М., 1974; Лопатин Б. А., Теоретические основы электрохимических методов анализа, М., 1975.
Б. А. Лопатин.
Электрохимический генератор
Электрохими'ческий генера'тор (ЭХГ), химический источник тока , в котором реагенты (обычно газообразные или жидкие вещества) в ходе электрохимической реакции непрерывно поступают из специальных резервуаров к электродам. ЭХГ состоит из батареи топливных элементов , систем хранения и подачи реагентов, отвода продуктов реакции, контроля и автоматического управления. В отличие от гальванических элементов, ЭХГ могут работать до тех пор, пока осуществляется подвод реагентов (топлива и окислителя) и отвод продуктов реакции.
Перспективны ЭХГ, в которых в качестве горючего используют водород, экологически чистый источник энергии. С середины 1970-х гг. в СССР, США, ФРГ, Франции, Японии и др. странах ведутся работы по созданию и использованию водородно-кислородных и особенно водородно-воздушных ЭХГ. Применение такого рода источников электрической энергии в радио- и телевизионных устройствах (рис. ) и на транспортных средствах должно способствовать решению проблемы сохранения чистоты окружающей среды. Кпд водородно-кислородных ЭХГ, созданных в СССР и США, достигает 70—80%. Кпд ЭХГ, работающих при постоянных давлении и температуре с поглощением тепла из окружающей среды, теоретически может превосходить 100%.
Лит. см. при ст. Химические источники тока .
Н. С. Лидоренко, Г. Ф. Мучник.
Водородно-воздушный электрохимический генератор для питания переносного телевизора (мощность 15 вm, ресурс работы 2000 ч ).
Электрохимический потенциал
Электрохими'ческий потенциа'л, термодинамическая функция, характеризующая состояние какого-либо компонента, состоящего из заряженных частиц (электронов, ионов), в фазе данного состава. Э. п. может быть определён как приращение любого из потенциалов термодинамических системы при введении в неё одной заряженной частицы i -того компонента при неизменных всех остальных переменных, от которых зависит рассматриваемый потенциал. Э. п. , выражается формулой: