Большая Советская Энциклопедия (ЭЛ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Электроход
Электрохо'д, самоходное судно, у которого электрический привод движителей получает энергию от собственной электростанции, аккумуляторных батарей или внешней электрической сети. По типу первичных двигателей (турбина, дизель) различают турбо-Э. и дизель-Э. Основное преимущество Э. заключается в способности электродвигателей плавно изменять скорость вращения гребного вала и быстро менять направление его вращения, что улучшает манёвренность Э. Использование в качестве главных энергетических установок высокооборотных двигателей внутреннего сгорания, работающих в постоянном режиме, снижает эксплуатационные износы. Кроме того, использование электродвигателей и электрогенераторов позволяет размещать их наиболее рационально и независимо и отказаться от громоздких редукторов. Однако большие потери электрической энергии при передаче (10—15%), относительная сложность и дороговизна энергетической установки в целом и повышенные затраты труда на ремонт и эксплуатацию относительно других энергетических систем препятствуют распространению Э. Число Э. в общем количестве судов (с регистровой вместимостью более 100 т ) мирового гражданского морского флота составляет около 1,8% (в основном суда ледового плавания, буксирные суда, паромы). Развитие судовых ядерных энергетических установок открывает широкие возможности развития Э.
Электрошлаковая печь
Электрошла'ковая печь, агрегат для проведения электрошлакового переплава . Э. п. имеют механизмы для подачи расходуемого электрода в шлаковую ванну, поддон, на котором установлен кристаллизатор для формирования слитка, или механизмы для перемещения кристаллизатора (и слитка с поддоном) во время плавки (рис. 1 ). Э. п. питаются переменным током промышленной или пониженной частоты или (редко) постоянным током. Мощность печного трансформатора достигает 5—10 Мва.
Типичная Э. п. — агрегат периодического действия; имеются «мини-печи» непрерывного действия. Различают одно- и трёхфазные, моно- и бифилярные, одно- и многоэлектродные, одно- и многопозиционные, специализированные и универсальные (многоцелевые) Э. п. Шлак, предварительно расплавленный во флюсоплавильной электропечи с графитовой футеровкой и графитовым электродом, заливают в кристаллизатор сифонным способом или сверху, включают электрический ток и начинают подавать расходуемый электрод в шлаковую ванну. Процесс ведётся в автоматическом режиме по программатору. После наплавления слитка заданной длины подпитывают его головную часть, выключают ток, сливают из кристаллизатора жидкий шлак, затем поднимают кристаллизатор и раздевают слиток, снимают огарок электрода и устанавливают в электрододержатель новый расходуемый электрод — печь готова к следующей плавке. Удельный расход электроэнергии на Э. п. 1000—1500 квт ·ч/т, расход флюса до 5% массы слитка, расход воды на охлаждение кристаллизатора, поддона, электрододержателя, токоведущих частей до 500 м 2 /ч.
Первые в мире промышленные Э. п. были спроектированы и изготовлены институтом электросварки им. Е. О. Патона АН УССР; в 1958 Э. п. введены в эксплуатацию на заводе «Днепроспецсталь» и Новокраматорском машиностроительном заводе. Современная однофазная четырёхэлектродная бифилярная Э. п. для выплавки листовых слитков массой до 40 т (толщиной 500 мм, шириной 2500 мм и высотой более 4 м ) имеет 2 печных трансформатора мощностью по 3500 ква, работает по схеме встречного движения электродов и подвижного короткого уширенного в верхней части кристаллизатора, снабжена системами продувки шлаковой и металлической ванн газовыми смесями, вторичного охлаждения и обогрева донной части слитка (рис. 2 ). Время выплавки 40-тонного слитка до 16 ч. Производительность Э. п. G (кг/ч ) подсчитывается по эмпирической формуле G = D, где D — сторона квадрата (блюминговый слиток), широкая грань (слябинговый слиток), диаметр круглого слитка сплошного сечения или наружный диаметр полого слитка (мм ). В СССР действуют Э. п. многих типов в специализированных цехах металлургических заводов (масса сортового слитка до 8 т, листового до 20—40 т ) и заводов тяжёлого машиностроения (кузнечные слитки до 200 т ). Вслед за СССР Э. п. были построены в Великобритании, ФРГ, США и Японии. По советской лицензии Э. п. сооружены и эксплуатируются во Франции, Японии, Швеции, НРБ, ПНР, СРР, СФРЮ и других странах. В СССР, США и ФРГ создаются автоматизированные системы управления (АСУ) работой Э. п.
Лит.: Электрошлаковые печи, К., 1976.
Б. И. Медовар.
Рис. 2. Электрошлаковая печь для выплавки листовых слитков: 1 — трансформаторы; 2 — расходуемые электроды: 3 — кристаллизатор; 4 — слитки.
Рис. 1. Схемы конструкций электрошлаковых печей: а — с неподвижными слитком и кристаллизатором и опускающимся по мере оплавления электродом; б — с неподвижным кристаллизатором и опускающимися по ходу плавки слитком и электродом: в — с неподвижным слитком, поднимающимся по ходу плавки кристаллизатором и опускающимся электродом.
Электрошлаковая сварка
Электрошла'ковая сва'рка, шлаковая электросварка; см. Сварка .
Электрошлаковый переплав
Электрошла'ковый перепла'в электрометаллургический процесс, при котором металл (расходуемый электрод) переплавляется в ванне электропроводного синтетического шлака под действием тепла, выделяющегося в шлаке при прохождении через него электрического тока. Э. п., существенно повышающий качество металлов и сплавов, разработан в начале 50-х гг. 20 в. в институте электросварки им. Е. О. Патона АН УССР на основе электрошлакового сварочного процесса (см. Сварка ). Расходуемый электрод представляет собой отливку, прокатное изделие или поковку из металла, полученный в мартеновской, дуговой, вакуумноиндукционной печах или кислородном конвертере. В процессе Э. п. температура шлака, состоящего из CaF2, CaO, SiO2 , Al2 O3 и других компонентов, превышает 2500°С. Капли жидкого электродного металла проходят через слой шлака и образуют под ним слой металла, из которого при последовательном затвердевании в водоохлаждаемом кристаллизаторе формируется слиток (рис. ).
По мере оплавления расходуемый электрод подаётся в шлаковый слой, непрерывно восполняя объём кристаллизующегося металла. Шлак является рафинирующей средой. Электрошлаковое рафинирование металла происходит в плёнке жидкого металла на оплавляющемся конце электрода, при прохождении капель металла через шлаковую ванну и на поверхности раздела шлаковой и металлической ванн.
Изменяя состав шлака и температурный режим процесса, осуществляют избирательное рафинирование металла. В результате Э. п. содержание серы снижается в 2—5 раз, кислорода и неметаллических включений в 1,5—2,5 раза. Слиток характеризуется плотной направленной микроструктурой, свободен от дефектов литейного и усадочного происхождения. Химическая и структурная однородность слитка обусловливает изотропность физических и механических свойств металла в литом и деформированном виде. Способом Э. п. получают слитки массой от десятков г до 200 т практически любой нужной формы, определяемой формой кристаллизатора. Наряду с передельными (для прокатки сортовых профилей, труб и листа) и кузнечными (для ковки, прессования и штамповки) слитками производят фасонные отливки (коленчатые валы, корпуса запорной арматуры, сосуды давления, зубчатые колёса и др.). Э. п. применяется в чёрной металлургии (шарикоподшипниковые, конструкционные, нержавеющие, инструментальные стали, жаропрочные сплавы), цветной металлургии (хромистая бронза, никелемедные сплавы), тяжёлом машиностроении (теплоустойчивые, высокопрочные штамповые, валковые стали). Процесс запатентован и используется по советской лицензии во многих странах.
Лит: Электрошлаковый переплав, М., 1963; Латаш Ю. В., Медовар Б. И., Электрошлаковый переплав, М., 1970.
Б. И. Медовар.
Схема электрошлакового переплава с одним (а) и двумя (б) расходуемыми электродами: 1 — расходуемый электрод; 2 — шлаковая ванна; 3 — металлическая ванна; 4 — слиток.
Электроэнергетика
Электроэнерге'тика, ведущая составляющая часть энергетики , обеспечивающая электрификацию хозяйства страны на основе рационального производства и распределения электроэнергии. Э. имеет важное значение в хозяйстве любой промышленно развитой страны, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электроэнергии является одновременность её генерирования и потребления.