Том 26. Мечта об идеальной карте. Картография и математика - Рауль Ибаньес
Шрифт:
Интервал:
Закладка:
Теперь, когда вопрос об изменении размеров решен, осталось решить проблему изменения формы. Как вы увидите, она намного сложнее, и именно здесь в действительности скрывается святой Грааль картографии — идеальная карта. Чтобы решить эту проблему, нужно изучить математические проекции сферы на плоскость и рассмотреть, как они изменяют различные метрические свойства. Это центральная тема математической картографии и настоящей главы. Как мы упоминали в предисловии, существует множество математических преобразований сферы в плоскость и, как следствие, множество разных проекций, на основе которых можно составить столь же большое число самых разных карт. Далее для простоты мы будем понимать картографические проекции как отображения сферы единичного радиуса на плоскость Кроме того, с математической точки зрения проекции должны обладать некоторыми естественными свойствами: в частности, они должны быть непрерывными и дифференцируемыми. Это означает, что сфера должна проецироваться на плоскость разумным образом, то есть без складок, разрезов и наложений.
Как мы уже отмечали, важно знать, как изменяются основные метрические свойства при использовании тех или иных проекций. Поэтому начнем наши поиски точной карты земной сферы с того, что докажем следующее утверждение: в проекции, сохраняющей расстояния между точками (такие отображения называются изометрическими), также сохраняются кратчайшие пути (геодезические линии), углы и площади. Кроме того, сохранение расстояний эквивалентно сохранению длин кривых. Предыдущие утверждения — не более чем частный случай анализа дифференцируемых отображений между регулярными поверхностями применительно к их метрическим свойствам (доказательство этого утверждения методами дифференциальной геометрии можно найти в любом классическом учебнике по этой дисциплине).
Проекция, сохраняющая расстояния, сохраняет и кратчайшие путиДалее мы докажем, что любая проекция сферы на плоскость, сохраняющая расстояния (это означает, что расстояние между двумя произвольными точками сферы будет равно расстоянию между отображениями этих точек на плоскости), также сохраняет кратчайшие пути, иными словами, отображением больших кругов сферы будут прямые на плоскости.
Докажем это утверждение методом от противного, который заключается в том, что мы считаем утверждение, которое хотим доказать, ложным, и путем логических рассуждений приходим к противоречию, затрагивающему исходную гипотезу. Следовательно, утверждение, которое мы хотим доказать, будет истинным. В нашем случае предположим, что проекцией больших кругов не всегда будет прямая.
Если бы рассматриваемая проекция в самом деле не сохраняла кратчайшие пути, то существовали бы две точки сферы А и В и точка С, лежащая на кратчайшем пути между ними (то есть на большом круге, проходящем через А и В), такая, что ее отображение на плоскость С' не лежало бы на кратчайшем пути (прямой), соединяющем отображения точек А и В — А' и В' соответственно.
Имеем: так как рассматриваемая проекция сохраняет расстояния, то расстояние между отображениями А' и В' равно расстоянию между исходными точками А и В:
d(A, B) = d(A', B').
Так как точка С лежит на кратчайшем пути между А и В, расстояние между этими точками будет равно сумме расстояний между А и С и между С и В:
d(A, B) = d(A, C) + d(C, B).
Тем не менее точка С не лежит на прямой, соединяющей А' и В', следовательно:
d(A', B') < d(A', C') + d(C', B').
Но так как рассматриваемая проекция сохраняет расстояния, то последняя сумма будет равна d(A, С) + d(С, В). Имеем противоречие: мы доказали, что
d(A, B) < d(A, B).
Это очевидно ложное утверждение означает, что проекция не сохраняет кратчайшие пути.
Сохранение расстояний в проекции означает сохранение длин кривыхИспользуем утверждение из предыдущего раздела (проекции, сохраняющие расстояния, сохраняют и кратчайшие пути), чтобы доказать, что в этом случае кривые на сфере преобразуются в кривые на плоскости, имеющие ту же длину. Почему это утверждение верно? Во-первых, любую кривую на сфере можно приближенно представить в виде конечного (но достаточно большого) числа дуг больших кругов. Концы этих дуг р0, р1, р2, …, рn-1, pn лежат на кривой, как показано на иллюстрации.
Следовательно, длину кривой можно приближенно представить как сумму длин этих дуг, или, иными словами, как сумму расстояний между их концами. Так как речь идет о дугах больших кругов, это будут кратчайшие расстояния, соединяющие концы дуг:
l(α) = d(р0, р1) + d(р1, p2) + …+ d(рn-1, рn).
Во-вторых, кривую на плоскости, которая является отображением исходной кривой на сфере, можно приближенно представить с помощью множества отрезков, которые будут отображениями дуг больших кругов (об этом мы рассказали в прошлом разделе), а длину плоской кривой — как сумму длин расстояний между концами этих отрезков р'0, р'α, р'2, …, p'n :
l(α') = d(р'0, р'1) + d(р'1, p'2) + … + d(р'n-1, р'n).
В-третьих, так как рассматриваемая проекция сохраняет расстояния, то расстояние между концами отрезков, составляющих исходную кривую на поверхности сферы, будет равно расстоянию между отображениями этих точек, которые будут концами отрезков, составляющих проекцию этой кривой:
d(pi, pi+1) = d(pi, pi+1), i = 0, …, n-1.
Учитывая три приведенных утверждения, можно сказать, что проекция преобразует кривую на сфере в плоскую кривую той же длины.
* * *
СКОЛЬКО КРАСОК НУЖНО, ЧТОБЫ РАСКРАСИТЬ КАРТУ?
Когда мы были детьми, то наверняка рисовали карты, которые требовалось закрасить так, чтобы области одного цвета не имели общих границ. Возможно, кто-то даже смог увидеть, что для раскраски такой карты достаточно четырех красок. Именно эта мысль в середине XIX века пришла в голову брату одного из студентов Огастеса де Моргана — Фрэнсису Гутри (позднее он стал математиком и ботаником), когда он рассматривал карту графств Англии. Де Морган рассказал об этой гипотезе своим коллегам-математикам.
В 1879 году адвокат сэр Альфред Брей Кемпе, ученик математика Артура Кэли, предложил доказательство гипотезы о четырех красках. К сожалению, его доказательство оказалось ошибочным, хотя содержало интересные и глубокие идеи. Лишь в 1976 году Кеннет Аппель и Вольфганг Хакен опубликовали окончательное доказательство теоремы о четырех красках. В нем исходная теорема была выражена на языке теории графов. Аппель и Хакен пошли от противного и предположили, что исходная гипотеза ложна и что существуют карты (графы), которые нельзя раскрасить четырьмя красками, затем они показали, что в таких картах существуют определенные «неизбежные конфигурации» и, наконец, что все подобные конфигурации на самом деле можно раскрасить четырьмя красками. Объем вычислений, которые потребовалось провести на последнем этапе доказательства, был столь велик, что пришлось прибегнуть к помощи компьютера, и это вызвало широкую полемику в математическом сообществе. Можно ли считать доказательство корректным, если оно включает вычисления, выполненные на компьютере, при этом предполагается, что любое доказательство должно быть убедительным, формализуемым и, что самое главное, проверяемым?
Карта мира, раскрашенная четырьмя красками: красной, синей, зеленой и желтой (на иллюстрации они представлены различными оттенками серого). Этих четырех красок достаточно, чтобы никакие две области, имеющие общую границу, не были окрашены в один цвет.
* * *
Читатель, знакомый с дифференциальной геометрией или анализом бесконечно малых, возможно, заметил, что в более строгом варианте представленного выше доказательства не обойтись без методов математического анализа.