Категории
Самые читаемые
onlinekniga.com » Документальные книги » Публицистика » Физик читает Кэрролла - Ю Данилов

Физик читает Кэрролла - Ю Данилов

Читать онлайн Физик читает Кэрролла - Ю Данилов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3
Перейти на страницу:

В бесплотной игре внешне свободно трансформируемых слов (_имен_), составляющей по мнению некоторых филологов и философов {См., например: Elisabeth Sewell. The Field of Nonsense. L., 1952.} существо кэрролловского нонсенса, физик явственно ощущает отражение сложных отношений между реальными объектами - носителями имен (_денотатами_). Nonsense Кэрролла физик воспринимает не как отсутствие всякого смысла ("senselessness"), а как разрыв с обычным приземленным "здравым смыслом" ("common sense"), лишающим полета фантазию художника и ученого. Отказываясь от логики здравого смысла, Кэрролл приносит ее в жертву логике несравненно более глубокой, во многом напоминающей диалектическую логику современного научного исследования, подчас столь причудливую, что она кажется непостижимой, противоречивой и способной повергнуть в отчаяние не только человека, далекого от науки, но и самого исследователя.

Язык для Кэрролла не был набором пустых символов-слов, лишенных значения. Он видел в языке податливый пластический материал для проверки своих открытий. Предвосхитив своими смелыми экспериментами в области языка появление таких наук, как семантика и семиотика, Кэрролл, быть может, лучше, чем кто-нибудь другой, сознавал, какую опасность для непреложности выводов любой теории (Кэрролла прежде всего интересовала теория логического вывода) таят в себе неоднозначность живого языка, а также неумеренное использование интуитивных соображений, рассуждений по аналогии и отсутствие свода четко сформулированных правил вывода. Кэрролл сумел частично осуществить свои намерения, разработав оригинальный вариант математической логики, позволивший чисто формально, без обращения к содержанию посылок, решать не только силлогизмы, но и более сложные логические задачи - так называемые сориты.

Современный физик, на собственном опыте познавший не только плодотворность, но и ограниченность одной из разновидностей формализации _аксиоматического метода_, с пониманием относится к "формальным" исканиям Кэрролла. В них физик усматривает не бесплодные схоластические упражнения, а стремление обнаружить немногие _структуры_, скрытые за многообразием внешних форм. Неожиданная близость структур, таящихся в далеких на первый взгляд понятиях, служит своеобразным отражением единства материального мира не только в физической теории, но и в причудливом зеркале кэрролловского нонсенса.

Столь милую сердцу Кэрролла игру со словами (и словами) физик склонен воспринимать отнюдь не как забаву, а как формальную модель поиска в том или ином смысле оптимального решения в условиях конфликта, где противоборствующей стороной выступает пресловутый "здравый смысл". Именно поэтому игру, пронизывающую весь кэрролловский нонсенс, следовало бы отнести не столько к сфере психологии, сколько к компетенции одного из разделов современной математики - так называемой "теории игр", правда, с одной существенной оговоркой: эта игра _индуктивна_, ее правила заранее не известны.

Всякий раз, когда физик, накопив достаточно обширный экспериментальный материал, пытается найти в нем скрытые закономерности, природа также вступает с ним в игру, весьма напоминающую Королевский крокет, в котором "_правил нет, а если и есть, то их никто не соблюдает_". Сошлемся лишь на один из множества примеров этой удивительной аналогии: историю открытия Иоганном Кеплером двух первых законов движения планет.

Пытаясь разгадать законы движения Марса, Кеплер неожиданно для себя оказался втянутым в изнурительную игру с природой, правила которой (предполагаемая форма орбиты Марса и характер его движения) менялись каждый раз, когда окончательный результат казался уже близким. Игра велась столь "жестко", что аллегорическому посвящению к "Новой астрономии" - отчету о сделанных открытиях - Кеплер придал форму "реляции о победе". Блестящие литературные достоинства "Новой астрономии" и особенности кеплеровского мышления позволяют считать Иоганна Кеплера своего рода предтечей Кэрролла. Подробности описания "битвы с Марсом" и Королевского крокета совпадают в деталях, исключающих возможность случайной аналогии. Речь идет не о сходстве, а о чем-то более глубоком, своего рода _изоморфизме_ - двух внешне различных описаниях _одного_ и _того_ же явления.

В сценах Безумного чаепития и суда (так же, как и во многих других эпизодах из "Алисы в Стране чудес" и "Зазеркалья") физик без труда различает злую, но точную карикатуру на процесс развития физической теории. Сколь ни абсурдна схема судопроизводства "_Сначала приговор, потом доказательства_", именно она передает то, что не раз происходило в истории физики.

Вспомним хотя бы обстоятельства "рождения" квантовой механики. Многочисленные попытки описать спектр черного тела {В самом названии "черное тело" есть нечто кэрролловское. Физики давно не связывают его с "чем-то черным". Раскаленное тело может оказаться почти черным. Черное тело невидимо, если оно находится в тепловом равновесии с окружающим его электромагнитным полем. В темноте и невидимка черный.}, предпринятые физиками в конце XIX в., оказались неудачными. При больших частотах в ультрафиолетовой части спектра хорошо "работала" формула Вина, при малых совсем другая формула Рэлея-Джинса. Сшить оба куска в единое целое так, чтобы "_все было по правилам_" (как хотел того на суде Белый Кролик), не удавалось никому: безупречные логические доказательства приводили к софизму. И тогда Планк во имя спасения физики решился на предположение, которое противоречило всему опыту предшествующего развития физики. Он высказал знаменитую гипотезу квантов: энергия атома изменяется не непрерывно, а может принимать лишь дискретный ряд значений, пропорциональных кванту действия hv.

О своем "приговоре" Планк сообщил 14 декабря 1900 г. на заседании Берлинского физического общества. И, хотя формула Планка была проверена Экспериментально в ту же ночь, понадобилось не одно десятилетие, прежде чем были "собраны доказательства" и квантовая механика обрела статус физической теории.

О том, сколь тяжело дается разрыв с привычным, устоявшимся кругом идей и представлений, свидетельствует письмо Планка Роберту Вуду, написанное уже после создания квантовой механики в 1933 г.: "Дорогой коллега! Во время ужина, устроенного в мою честь в Тринити Холл, Вы высказали пожелание, чтобы я написал Вам более подробно о том психологическом состоянии, которое привело меня когда-то к постулированию гипотезы квантов энергии. Выполняю Ваше пожелание. Кратко я могу описать свои действия как акт отчаяния, ибо по своей природе я миролюбив и не люблю сомнительных приключений. Но я целых шесть лет, начиная с 1894 г., безуспешно воевал с проблемой равновесия между излучением и веществом. Я знал, что эта проблема имеет фундаментальное значение для физики; я знал формулу, которая дает распределение энергии в нормальном спектре, поэтому необходимо было найти теоретическое объяснение, чего бы это ни стоило. Классическая физика была здесь бессильна - это я понимал... (кроме двух начал термодинамики).

Я был готов принести в жертву мои установившиеся физические представления. Больцман объяснил, каким образом термодинамическое равновесие возникает через равновесие статическое. Если развить эти соображения о равновесии между веществом и излучением, то обнаружится, что можно избежать ухода энергии в излучение при помощи предположения, согласно которому энергия с самого начала должна оставаться в форме некоторых квантов. Это было чисто формальное предположение, и я в действительности не очень размышлял о нем, считая только, что, несмотря ни на какие обстоятельства сколько бы ни пришлось за это заплатить, я должен прийти к нужному результату" {Цит. по Я. А. Смородинский. Физика на рубеже века. - "Природа", 1970, Э 4, с. 60.}.

Схеме "_Сначала приговор, потом доказательство_" следует не только физика (и другие естественные науки), но и гораздо более абстрактная наука математика. Достаточно вспомнить хотя бы труды Эйлера, с непревзойденным искусством оперировавшего с рядами задолго до того, как возникла их теория, Хэвисайда, создавшего операционное исчисление и дерзавшего пользоваться им в расчетах, несмотря на полное отсутствие обоснования, Г. Кантора, создавшего теорию множеств, ставшую, несмотря на обнаруженные впоследствии многочисленные парадоксы, подлинным "_раем для математиков_" (Д. Гильберт).

Различие между судебным процессом, проходящим по обычной, "добропорядочной" схеме (сначала доказательства, потом вынесение приговора), и изображенной Кэрроллом нелепой "обратной" схемой по существу представляет собой различие между двумя направлениями в развитии науки. Одно направление условно можно назвать "_классическим_", или "_ньютоновским_", в честь его наиболее выдающегося представителя. Яркий пример великого труда классического направления - "Математические начала натуральной философии" Ньютона (здесь слово "математические", открывающее название этой великой книги, исполнено глубокого смысла). Но плавное развитие классической теории порой тормозят факты, упрямо не желающие укладываться в строгую логическую схему. И тогда успех приходит к сторонникам другого, "кеплеровского" направления, не боящимся сделать решительный шаг и сойти с торной дороги.

1 2 3
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Физик читает Кэрролла - Ю Данилов.
Комментарии