Моделирование синергетических систем. Метод пропорций и другие математические методы. Монография - Виктор Шаповалов
Шрифт:
Интервал:
Закладка:
Только при таком понимании Yi эволюционное уравнение (1) может описывать самоорганизацию. Действительно, если внешний мир изменит управляющие параметры, то процесс подстраивания системы к новым их значениям проявится в том, что элементы подсистем, представленных в (1) в виде обобщенных переменных, изменят свое коллективное движение. Это следует из того, что в (1) изменение управляющих параметров непосредственно влияет на значения Yi, т. е. на подсистемы, а не на их элементы. Следовательно, элементам придется самопроизвольно изменить взаимодействие между собой, чтобы их коллективное движение стало соответствовать новым значениям управляющих параметров. Иначе говоря, в системе произойдет самоорганизация (см. определение самоорганизации в первой сноске на с. 5).
Итак, в данной книге под переменными Yi в (1) мы понимаем макроскопические переменные, соответствующие некоторым обобщенным характеристикам коллективного движения элементов системы. Напомним, что в синергетике такие переменные называются параметрами порядка [19].
Математически создание синергетической модели, как правило, начинается с выбора параметров порядка, т. е. с выбора макроскопических переменных, количественно характеризующих основные связи в системе. Следующий шаг заключается в составлении пропорций, формирующих эти связи. Правило составления пропорций подробно описано в [19] (см. также [3]). Согласно этому правилу, увеличение некоторой величины с течением времени пропорционально приросту этой величины минус ее потери. Затем эти пропорции преобразуются в эволюционное уравнение типа (1).
Глава 1
Применение некоторых известных дифференциальных уравнений для создания моделей социальных и экономических систем
1.1. Экстремальное поведение большой группы людей
Если какой-либо объект представляет собой систему, то он обязательно подчиняется универсальным системным закономерностям. Социальные системы не являются исключением. В частности, коллективное поведение людей в простейшей экстремальной ситуации наглядно демонстрирует качества, которые могут наблюдаться в поведении, например, физических систем.
Допустим, что в здании находится большая группа людей. В некоторый момент времени, принятый за начальный, все люди пытаются выйти из здания. Мы хотим получить закон, показывающий, как с течением времени уменьшается число людей в здании [28].
Введем обозначения: N – количество людей, находящихся в здании в произвольный момент времени t; dN – количество людей, вышедших из здания за время dt. Сформулируем начальное условие: в момент времени t = 0 количество людей в здании равнялось N0.
Составляем главную пропорцию задачи (см. введение, последний абзац). Делается это следующим образом. Из общих соображений можно предположить, что число людей, вышедших из здания за некоторый промежуток времени, пропорционально самому промежутку времени и количеству людей, находящихся в здании:
dN ~ dt, N.
Заменяя знак пропорции на коэффициент пропорциональности А, получим
dN = —ANdt,
или
Эволюционное уравнение данной задачи (сравните с (1)). Появление минуса объясняется тем, что с увеличением t уменьшается N (dN < 0).
Данное уравнение представляет собой известное дифференциальное уравнение с разделяющимися переменными. Поступаем согласно методу решения, описанному в разделе П1.2 Приложения. Сначала разделяем переменные по разные стороны уравнения, затем полученное выражение интегрируем:
где C – постоянная интегрирования. Выразим N:
(2)
Постоянную C определим из начального условия. В нашей модели начальное условие будет выглядеть следующим образом (см. в Приложении формулу (П.1)):
N│t = 0 = N0.
В соответствии с этим условием мы в (2) подставим t = 0 и N0 вместо N:
N0 = Ce – A ∙ 0 = Ce0 = C.
Следовательно, C = N0. Тогда (2) примет окончательный вид
N = N0 e—At.
Итак, мы получили закон, показывающий, как с течением времени уменьшается количество людей в здании. Здесь постоянная А характеризует архитектурные особенности здания: количество этажей, количество выходов и т. п.
Как видим, поведение людей, покидающих в экстремальной ситуации здание, будет таким, чтобы совместными действиями реализовать закон экспоненциального уменьшения числа людей в здании.
Нетрудно заметить, что данный закон по своему математическому виду совпадает с известным в физике законом радиоактивного распада:
N = N0 e—At; N – число нераспавшихся атомов,
что наглядно демонстрирует универсальность системного подхода к явлениям в природе и обществе.
1.2. Модель воздействия рекламы на количество покупаемого товара
(Изложение данного раздела следует работам [23, 28].) Как и в предыдущем разделе, мы воспользуемся методом составления главных пропорций.
Пусть за время dt приобретается dy товара (y – количество некоторого товара). Наблюдение за применением рекламы показывает, что в результате действия рекламы происходит ускорение приобретения товара с течением времени. Математически ускорение представляет собой вторую производную по времени, поэтому предыдущее утверждение можно записать в виде следующей пропорции:
или
(3)
где a – потенциальное действие рекламы; α – коэффициент пропорциональности.
Уравнение (3) характеризует потенциальное действие рекламы. Однако на практике ее действие испытывает влияние различных факторов, как способствующих, так и мешающих восприятию рекламного материала. Все эти факторы разделяются на две основные группы: F1 – факторы, связанные с особенностями товара; и F2 – факторы, связанные с особенностями покупателя. Математически влияние этих групп можно учесть, добавив их в левую часть уравнения (3) (в левую, так как они влияют именно на действие рекламы a):
(4)
Перечень конкретных факторов, в той или иной степени имеющих отношение к группам F1 и F2, может быть очень велик. Из этого перечня, следуя идее метода основных пропорций, мы выберем главные факторы, обязательно присутствующие в любой операции купли-продажи.
В группе F1 среди качеств товара, влияющих на восприятие рекламы, определяющим является уровень его доступности для покупателя. Действительно, какими бы достоинствами ни обладал товар и как бы необходим он ни был, его широкая доступность снижает актуальность любой информации о нем. Поэтому для группы F1 в качестве определяющего фактора мы выбираем насыщенность рынка данным товаром. Соответствующая пропорция имеет вид:
F1 ~ y, откуда: F1 = – γy.
Здесь: γ – коэффициент пропорциональности, а минус указывает на то, что с увеличением количества товара на рынке снижается восприятие его рекламы (т. е. на то, что этот фактор должен уменьшать а в левой части уравнения (4)).
В группе F2 определяющим фактором является доход среднего покупателя. Это следует из того, что, каким бы желаемым ни был товар, если доход не позволяет его приобрести хотя бы в ближайшем будущем, то реакция на его рекламу будет снижена. На практике доход находит свое выражение через объем спроса. Последний же, как известно, представляет собой количество товара, который мог бы приобрести покупатель за определенный промежуток времени, что в математике соответствует первой производной по времени: dy/dt. Поэтому для этой группы факторов основная пропорция будет иметь вид:
Здесь: β – коэффициент пропорциональности; минус указывает на разные знаки у dt (t ↑, dt > 0) и dy (y ↓, dy < 0). Последнее следует из того, что в странах, в которых имеется инфляция, доход среднего покупателя с течением времени падает.
С учетом сказанного уравнение (4) запишется следующим образом:
откуда
(5)
Это известное линейное неоднородное дифференциальное уравнение с постоянными коэффициентами (НОЛУ). Уравнение (5) решаем стандартными математическими методами (метод решения НОЛУ см. в Приложении, раздел П1.4):
y = y* + y1, (6)
где y* – общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами (ОЛУ); y1 – частное решение НОЛУ.