Цифровой журнал «Компьютерра» № 79 - Коллектив Авторов
Шрифт:
Интервал:
Закладка:
О том, как в Intel используют фотонику в технологии высокоскоростного обмена данными Silicon Photonics Link, можно прочесть в статье "Скачать за секунду: достижения кремниевой фотоники".
Решения Intel на базе кремниевой фотоники обеспечат пятьдесят гигабит в секунду пропускной способности интерфейса компьютера с перифериейПришло время посмотреть на компоненты систем на основе кремниевой фотоники детальнее. Систем, потому что решения Intel — далеко не единственные. И, что самое главное, сегодня это уже не просто лабораторные экзерсисы. Кремниевая фотоника обзавелась всеми необходимыми возможностями и вполне готова плодотворно сотрудничать с имеющимися микроэлектронными решениями.
Примером такого сотрудничества может служить герой нынешнего материала — проект компании IBM с метким названием SNIPER (Silicon Nano-Scale Integrated Photonic and Electronic Transceiver).
Фотоника. Кирпичики технологииСпособна ли фотоника полностью заменить электронику в микросхемотехнике? Наверное, нет. Распространение света основывается на законах оптики, что вносит существенные ограничения в разработку таких базовых компонентов, как транзисторы, конденсаторы и диоды. Нет, попытки разработать оптические аналоги транзистора предпринимались достаточно давно, да и сегодня они не прекращаются. Только вот составить конкуренцию отработанной технологии КМОП они не могут.
Схема фотонного транзистора была предложена ещё в восьмидесятых годах прошлого столетияВ чём фотоника действительно преуспевает, так это в реализации высокоскоростных каналов, связывающих компоненты цифровых схем. То есть в тех местах, где электроника начинает всё активнее буксовать. Увеличение степени интеграции компонентов микросхем сказывается на размерах соединяющих их металлических проводников. С переходом на двадцатидвухнанометровый технологический процесс производства КМОП инженеры столкнулись с проблемой переходных явлений в миниатюрных медных шинах. Явления эти способны легко привести к ошибкам в работе сложного вычислительного комплекса, плотно упакованного в кремниевый чип.
Использование фотоники в качестве коммуникационной среды микросхем позволяет технологам одновременно избавить новые чипы от влияния переходных процессов в медных проводниках и существенно снизить нагрев микросхемы. В отличие от непродуктивно превращающих свою энергию в тепло электронов, фотоны, продвигаясь по оптическому проводнику, совершенно не рассеивают тепло.
Итак, компромиссным решением является комбинация электроники и фотоники. За электроникой остаётся основа цифровой схемотехники, а фотоника берёт на себя роль универсальной проводящей среды.
Что же для такой среды нужно? В первую очередь источник фотонов — лазер. Далее — проводящая среда, по которой фотоны смогут распространяться внутри микросхем, — волноводы. Чтобы нули и единицы, сформированные электронными компонентами, превратились в световой поток, и для обратного преобразования потребуются модуляторы и демодуляторы, но, конечно же, не простые, а оптические.
Ну и, чтобы добиться высокой пропускной способности, необходимой каналам нынешних интегральных микросхем, потребуются мультиплексоры и демультиплексоры (тоже, конечно, оптические). Причём все эти компоненты необходимо реализовать на той же самой кремниевой базе, которая используется и для технологии КМОП.
Разработка этих «кирпичиков» — путь, которым шла кремниевая фотоника последние двадцать лет. За это время была предложена масса уникальных решений, которые и явились той самой «суммой технологий», позволяющей фотонике перейти на качественно новый уровень. Уровень интегрированных оптико-электронных схем.
Кремниевые лазерыВообще-то словосочетание «кремниевый лазер» — это оксюморон. Являясь так называемым непрямозонным полупроводником, кремний совершенно не способен излучать свет. Вот почему в оптоволоконных телекоммуникациях используются решения на основе других (прямозонных) полупроводников, например арсенида галлия. При этом кремний отлично подходит для создания волноводов и детектирования оптических сигналов в электрические.
Так в чём же проблема? Можно использовать внешний по отношению к кремниевой схеме лазер или же разработать гибридную схему на основе кремния и, например, того же арсенида галлия. Но ни то ни другое решение нельзя считать эффективным. В случае использования внешнего лазера (а в современных волоконно-оптических системах макроуровня так и делается) на микроуровне практически невозможно точно откалибровать луч по отношению к волноводу нанометровых размеров. Включение же арсенида галлия в технологический процесс производства чипов КМОП потерпело неудачу. Слишком разные условия для производства нужны этим двум полупроводникам.
Так что же, кремниевому лазеру никогда не увидеть (точнее, не испустить) свет? Конечно же, нет. Кремний можно заставить светить, если применить различные хитрости. Например, легировать его материалом, который будет испускать фотоны за кремний. Или так изменить структуру самого кремния, что он вынужден будет засветиться. Третий способ — применить комбинационное рассеяние света (его ещё называют рамановским), временно превращающее кремний в практически прямозонный полупроводник.
Один из способов заставить кремний светиться — создать пористую кремниевую структуруСхема и микрофотография лазера на основе рамановского рассеянияВ настоящее время наибольших успехов учёные добились в области технологий легирования кремния. Самая известная реализация кремниевого лазера непрерывного действия на их основе — лазер, разработанный компанией Intel совместно с Калифорнийским университетом Санта-Барбары. Учёным удалось с помощью окиси «приклеить» прямозонный полупроводник фосфид индия к кремниевому волноводу. Толщина «клея» при этом составляет всего 25 атомов. Создавая разность потенциалов между кремнием и фосфидом индия (это называется «электрическая накачка»), они добились формирования фотонов, которые через «клей» проникают в кремниевый волновод.
Схема схема гибридного кремниевого лазера непрерывного действияНа основе такой схемы создаются варианты гибридного кремниевого лазера с разной длиной волны (инфракрасного диапазона, прозрачного для кремния), что позволяет реализовать многоканальную коммуникационную систему.
Кремниевые модуляторыИспускаемый кремниевым лазером поток фотонов можно представить как несущую частоту, которую требуется модулировать двоичным сигналом.
Оптические модуляторы считались невозможными до тех пор, пока учёные не решили использовать явление интерференции света. В общем виде модулированный оптический сигнал можно получить путём интерференции опорного пучка света и пучка, прошедшего через материал, изменяющий показатель преломления под воздействием электрического тока (так называемый электрооптический эффект). К сожалению, кремний и здесь подкачал — его симметричная кристаллическая решётка не позволяет реализовать электрооптический эффект. На помощь вновь пришло легирование.
Учёные раздвоили кремниевый волновод и нарастили на одном из его плеч слой нитрида кремния, который растянул кристаллическую решётку кремния. Приложение к этому участку напряжения приводит к преломлению света в этом плече волновода. При этом в другом плече этот же поток распространяется без искажения.
Микрофотография участка плеча преломления света в модуляторе Маха-ЦендераРеализация всего модулятора Маха-Цендера и его варианты.Объединение этих потоков на выходе приводит к их интерференции, при этом выходной поток будет модулироваться приложением напряжения к плечу волновода с нитридом кремния. Изобретать велосипед учёным не пришлось. Подобный эффект широко применяется в интерферометрах Маха-Цендера. Поэтому кремниевые модуляторы и демодуляторы назвали точно так же.
Кремниевые мультиплексорыМножество модулированных световых потоков от множества лазеров с разной длиной волны может существенно повысить пропускную способность коммуникационного канала за счёт распараллеливания передачи данных. Но как это множество потоков объединить в один? Да ещё и таким образом, чтобы на выходе полученный суммарный поток снова можно было разделить. Здесь на помощь придут мультиплексоры. Оптические, естественно.