Выразительный JavaScript - Марейн Хавербеке
Шрифт:
Интервал:
Закладка:
return vector.x >= 0 && vector.x < this.width &&
vector.y >= 0 && vector.y < this.height;
};
Grid.prototype.get = function(vector) {
return this.space[vector.x + this.width * vector.y];
};
Grid.prototype.set = function(vector, value) {
this.space[vector.x + this.width * vector.y] = value;
};
Элементарный тест:
var grid = new Grid(5, 5);
console.log(grid.get(new Vector(1, 1)));
// → undefined
grid.set(new Vector(1, 1), "X");
console.log(grid.get(new Vector(1, 1)));
// → X
Программный интерфейс существ
Перед тем, как заняться конструктором мира World, нам надо определиться с объектами существ, населяющих его. Я упомянул, что мир будет спрашивать существ, какие они хотят произвести действия. Работать это будет так: у каждого объекта существа есть метод act, который при вызове возвращает действие action. Action – объект типа property, который называет тип действия, которое хочет совершить существо, к примеру “move”. Action может содержать дополнительную информацию – такую, как направление движения.
Существа ужасно близоруки и видят только непосредственно прилегающие к ним клетки. Но и это может пригодиться при выборе действий. При вызове метода act ему даётся объект view, который позволяет существу изучить прилегающую местность. Мы называем восемь соседних клеток их направлениями по компасу: “n” на север, “ne” на северо-восток, и т. п. Вот какой объект будет использоваться для преобразования из названий направлений в смещения по координатам:
var directions = {
"n": new Vector( 0, -1),
"ne": new Vector( 1, -1),
"e": new Vector( 1, 0),
"se": new Vector( 1, 1),
"s": new Vector( 0, 1),
"sw": new Vector(-1, 1),
"w": new Vector(-1, 0),
"nw": new Vector(-1, -1)
};
У объекта view есть метод look, который принимает направление и возвращает символ, к примеру "#", если там стена, или пробел, если там ничего нет. Объект также предоставляет удобные методы find и findAll. Оба принимают один из символов, представляющих вещи на карте, как аргумент. Первый возвращает направление, в котором этот предмет можно найти рядом с существом, или же null, если такого предмета рядом нет. Второй возвращает массив со всеми возможными направлениями, где найден такой предмет. Например, существо слева от стены (на западе) получит [“ne”, “e”, “se”] при вызове findAll с аргументом “#”.
Вот простое тупое существо, которое просто идёт, пока не врезается в препятствие, а затем отскакивает в случайном направлении.
function randomElement(array) {
return array[Math.floor(Math.random() * array.length)];
}
function BouncingCritter() {
this.direction = randomElement(Object.keys(directions));
};
BouncingCritter.prototype.act = function(view) {
if (view.look(this.direction) != " ")
this.direction = view.find(" ") || "s";
return {type: "move", direction: this.direction};
};
Вспомогательная функция randomElement просто выбирает случайный элемент массива, используя Math.random и немного арифметики, чтобы получить случайный индекс. Мы и дальше будем использовать случайность, так как она – полезная штука в симуляциях.
Конструктор BouncingCritter вызывает Object.keys. Мы видели эту функцию в предыдущей главе – она возвращает массив со всеми именами свойств объекта. Тут она получает все имена направлений из объекта directions, заданного ранее.
Конструкция || "s" в методе act нужна, чтобы this.direction не получил null, в случае если существо забилось в угол без свободного пространства вокруг – например, окружено другими существами.
Мировой объект
Теперь можно приступать к мировому объекту World. Конструктор принимает план (массив строк, представляющих сетку мира) и объект legend. Это объект, сообщающий, что означает каждый из символов карты. В нём есть конструктор для каждого символа – кроме пробела, который ссылается на null (представляющий пустое пространство).
function elementFromChar(legend, ch) {
if (ch == " ")
return null;
var element = new legend[ch]();
element.originChar = ch;
return element;
}
function World(map, legend) {
var grid = new Grid(map[0].length, map.length);
this.grid = grid;
this.legend = legend;
map.forEach(function(line, y) {
for (var x = 0; x < line.length; x++)
grid.set(new Vector(x, y),
elementFromChar(legend, line[x]));
});
}
В elementFromChar мы сначала создаём экземпляр нужного типа, находя конструктор символа и применяя к нему new. Потом добавляем свойство originChar, чтобы было просто выяснить, из какого символа элемент был создан изначально.
Нам понадобится это свойство originChar при изготовлении мирового метода toString. Метод строит карту в виде строки из текущего состояния мира, проходя двумерным циклом по клеткам сетки.
function charFromElement(element) {
if (element == null)
return " ";
else
return element.originChar;
}
World.prototype.toString = function() {
var output = "";
for (var y = 0; y < this.grid.height; y++) {
for (var x = 0; x < this.grid.width; x++) {
var element = this.grid.get(new Vector(x, y));
output += charFromElement(element);
}
output += "n";
}
return output;
};
Стена wall – простой объект. Используется для занятия места и не имеет метода act.
function Wall() {}
Проверяя объект World, создав экземпляр с использованием плана, заданного в начале главы, и затем вызвав его метод toString, мы получим очень похожую на этот план строку.
var world = new World(plan, {"#": Wall, "o": BouncingCritter});
console.log(world.toString());
// → ############################
// # # # o ##
// # #
// # ##### #
// ## # # ## #
// ### ## # #
// # ### # #
// # #### #
// # ## o #
// # o # o ### #
// # # #
// ############################
this и его область видимости
В конструкторе World есть вызов forEach. Хочу отметить, что внутри функции, передаваемой в forEach, мы уже не находимся непосредственно в области видимости конструктора. Каждый вызов функции получает своё пространство имён, поэтому this внутри неё уже не ссылается на создаваемый объект, на который ссылается this снаружи функции. И вообще, если функция вызывается не как метод, this будет относиться к глобальному объекту.
Значит, мы не можем писать this.grid для доступа к сетке изнутри цикла. Вместо этого внешняя функция создаёт локальную переменную grid, через которую внутренняя функция получает доступ к сетке.
Это промах в дизайне JavaScript. К счастью, в следующей версии есть решение этой проблемы. А пока есть пути обхода. Обычно пишут var self = this и после этого работают с переменной self.
Другое решение – использовать метод bind, который позволяет привязаться к конкретному объекту this.
var test = {
prop: 10,
addPropTo: function(array) {
return array.map(function(elt) {
return this.prop + elt;
}.bind(this));
}
};
console.log(test.addPropTo([5]));
// → [15]
Функция, передаваемая в map – результат привязки вызова, и посему её this привязан к первому аргументу, переданному в bind, то есть переменной this внешней функции (в которой содержится объект test).
Большинство стандартных методов высшего порядка у массивов, таких как forEach и map, принимают необязательный второй аргумент, который тоже можно использовать для передачи this при вызовах итерационной функции. Вы могли бы написать предыдущий пример чуть проще:
var test = {
prop: 10,
addPropTo: function(array) {
return array.map(function(elt) {
return this.prop + elt;
}, this); // ← без bind
}
};
console.log(test.addPropTo([5]));
// → [15]
Это работает только с теми функциями высшего порядка, у которых есть такой контекстный параметр. Если нет – приходится использовать другие упомянутые подходы.