Категории
Самые читаемые
onlinekniga.com » Компьютеры и Интернет » Программирование » Создание игр для мобильных телефонов - Майкл Моррисон

Создание игр для мобильных телефонов - Майкл Моррисон

Читать онлайн Создание игр для мобильных телефонов - Майкл Моррисон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 24 25 26 27 28 29 ... 87
Перейти на страницу:

В копилку Игрока

Некоторые телефоны могут поддерживать клавишные комбинации, но гарантии этому нет. Если вы создаете мидлет для конкретной модели телефона, то можете спокойно использовать все его возможности. В некоторые современные коммерческие игры, например, Tony Hawk's Pro Skater, невозможно играть, не используя клавишные комбинации.

Другая причина использовать метод getKeyStates() заключается в том, что он не возвращает значимой информации до тех пор, пока игровой холст невидим. Если игра поддерживает несколько экранов, то клавиши для игрового холста не будут активны, пока холст не будет выбран как текущий экран.

Снова о классе Sprite

Несмотря на то что эта глава посвящена обработке пользовательского ввода, стоит немного уйти в сторону и узнать больше о спрайтовой анимации, чтобы создать более интересный пример мидлета с обработкой пользовательского ввода. Мы более глубоко рассмотрим класс Sprite и научимся детектировать столкновения спрайтов и создавать спрайты с несколькими фреймовыми изображениями.

Обнаружение столкновений спрайтов

В предыдущей главе вы познакомились с теорией определения столкновений спрайтов, а также различными методами обнаружения. Если вы помните, обсуждались три подхода:

► обнаружение столкновений с помощью ограничивающих прямоугольников;

► обнаружение столкновений с помощью уменьшенных ограничивающих прямоугольников;

► обнаружение столкновений с использованием данных изображений.

Эти три метода обнаружения столкновений были представлены в порядке повышения точности, а также увеличения требуемой мощности процессора. Иначе говоря, обнаружение столкновений с помощью прямоугольников не такое точное, как если бы использовались данные изображений, но в первом случае нагрузка на процессор существенно меньше, чем во втором. Исходя из этого, вы должны решить, когда и какой метод обнаружения использовать.

Чтобы использовать MIDP API для обнаружения столкновений, вы должны применять методы класса Sprite(), которые называются collidesWith(). Каждый из этих методов отличается в зависимости от типа проверяемого объекта. Например, метод collidesWith() проверяет столкновение двух спрайтов:

CollidesWith(Sprite s, boolean pixelLevel)

Чтобы проверить столкновение, вызовите этот метод для спрайта и передайте в него другой спрайт. Второй параметр определяет, будет ли детектироваться столкновение на уровне пикселей, что соответствует методу детектирования столкновений с помощью данных изображения. Приведенный ниже фрагмент кода показывает, как можно обнаружить столкновение спрайта космического корабля с астероидом, используя данные изображений спрайтов:

shipSprite.collidesWith(roidSprite, true);

Если вы хотите использовать метод ограничивающих прямоугольников, то необходимо изменить код:

shipSprite.collidesWith(roidSprite, false);

Существует метод уменьшенных ограничивающих прямоугольников, который идентичен обычному методу ограничивающих прямоугольников. Чтобы изменить размер ограничивающего прямоугольника, вызовите метод defineCollisionRectangle() и введите новый размер. Например, если размер астероида составляет 42 35 пикселей, то, вероятно, вы захотите использовать меньший ограничивающий прямоугольник размером 32 25 пикселей. Ниже приведен код, выполняющий эту задачу:

alienSprite.defineCollisionRectangle(5, 5, 32, 35);

В этом примере прямоугольник, используемый для обнаружения столкновений, уменьшен с каждой стороны на 5 пикселей, поэтому он остается центрированным по отношению к спрайту. На рис. 6.1 показано изображение астероида с уменьшенным ограничивающим прямоугольником.

Рис. 6.1. Уменьшенный прямоугольник используется для ограничения изображения астероида при обнаружении столкновения

Интересно, что метод defineRectangleCollision() сказывается не только при использовании метода ограничивающих прямоугольников, но и при детектировании столкновения с применением данных изображения. Ранее я упомянул, что существует три различных метода collidesWith(), определенных в классе Sprite, один из них вы уже видели. Ниже приведены остальные два метода:

collidesWith(Image image, int x, int y, boolean pixelLevel) collidesWith(TiledLayer t, boolean pixelLeve)

Они проверяют столкновение спрайта с изображением и замощенным слоем соответственно. В этом случае вы должны указать координаты изображения XY. Слои похожи на спрайты, но используют несколько изображений, составляющих композицию. Вы можете создать лабиринт, используя замощенные слои, а затем проверить столкновение героя со стеной и ограничить перемещение. Подробнее о том, как сделать это, вы узнаете в главе 11.

Работа с анимационными спрайтами

Другая интересная возможность класса Sprite – это поддержка фреймовой анимации. Из предыдущей главы вы знаете, что фреймовая анимация создается путем показа последовательности изображений. В случае спрайта фреймовая анимация используется для изменения его внешнего вида, таким образом, спрайт может изменять не только свое положение на экране, но и внешний вид. Хороший пример анимационного спрайта – это астероид, летящий в космосе. Эффект движения достигается перемещением спрайта с течением времени, а эффект вращения – фреймовой анимацией спрайта.

Чтобы задать фреймы спрайта, расположите их внутри одного изображения в хронологическом порядке. На рис. 6.2 показан спрайт астероида, его изображение состоит из 14 фреймов, имитирующих вращение.

Рис. 6.2. Несколько фреймов спрайта помогают создать иллюзию вращения астероида

Вероятно, сложно представить, что это изображение может помочь имитировать движение, но именно этот эффект достигается при быстрой смене фреймов. Вы можете создать анимационный спрайт, передав конструктору спрайта изображение, а также его размер. Фреймы изображения должны иметь одинаковый размер. Ниже приведен код создания анимационного спрайта, изображение которого показано на рис. 6.2:

roidSprite = new Sprite(Image.createImage(«/Roid.png»), 42, 35);

Этот код определяет размер фрейма в изображении – 42х35 пикселей. Фреймы в изображении могут располагаться вертикально, горизонтально или в двух направлениях. Если вы располагаете фреймы по сетке, то нумерация происходит слева направо и сверху вниз (рис. 6.3).

Рис. 6.3. Располагая фреймы изображения в сетке, проход по сетке осуществляется слева направо и сверху вниз

Чтобы создать фреймовую анимацию спрайта, необходимо вызвать методы nextFrame() и prevFrame():

roidSprite.nextFrame();

Этот метод отображает следующий фрейм анимации спрайта. По умолчанию эта последовательность соответствует порядку следования фреймов в изображении, однако вы можете изменить эту последовательность. При достижении конца последовательности воспроизведения фреймов начинается воспроизведение с противоположного конца. В любое время вы можете узнать индекс текущего фрейма, вызвав метод getFrame(). Этот метод возвращает индекс фрейма в последовательности, а не реальный индекс в изображении. Рассмотрим в качестве примера следующую последовательность фреймов:

int [] sequence = {0, 1, 2, 3, 3, 3, 2, 1};

Пятый элемент этой последовательности – это третий фрейм изображения. Если сейчас отображается пятый фрейм анимации, то метод getFrame() возвратит значение 4 (отсчет ведется от 0), а не номер фрейма в изображении. Метод setFrame() позволяет назначить текущий индекс фрейма. Выполнив setFrame(6), вызовите фрейм с номером 6, поскольку 2 – это номер фрейма, который стоит шестым по счету. Помните, что эти номера соответствуют местам фреймов в изображении. Последовательности фреймов можно использовать для имитации взмахов крыльев, взрывов и т. п. С помощью метода setFrameSequence() вы можете изменить последовательность отображения фреймов. Этот метод принимает в качестве параметра целочисленный массив. Ниже приведен пример вызова этой функции для спрайта с птицей:

birdSprite.setFrameSequence(sequence);

Если вы уже близки к пониманию анимации спрайтов, то можно двинуться дальше! Оставшаяся часть главы посвящена совершенствованию мидлета UFO, рассмотренного в предыдущей главе. Вы добавите анимацию спрайта и пользовательский ввод. Ведь лучше один раз увидеть, чем сто раз услышать!

Создание программы UFO 2

Пример программы UFO из предыдущей главы поможет на практике освоить анимацию спрайтов. Теперь вы можете перевести мидлет на новый уровень, добавив управление, а также астероиды – препятствия на пути НЛО. Я буду называть эту программу UFO 2.

Мидлет UFO 2 содержит следующие изменения по отношению к исходной программе:

► пользовательский ввод, обеспечивающий управление летающим объектом;

► анимационные астероиды, летающие по экрану;

► детектирование столкновений летающего объекта с астероидами.

Вы уже достаточно хорошо подготовлены, чтобы сделать это!

Написание программного кода

Класс мидлета в примере UFO 2 не изменился по сравнению с предыдущим приложением, поэтому давайте перейдем непосредственно к изменению класса UFOCanvas. Первое изменение – это добавление трех спрайтов астероидов, которые хранятся в массиве типа Sprite:
1 ... 21 22 23 24 25 26 27 28 29 ... 87
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Создание игр для мобильных телефонов - Майкл Моррисон.
Комментарии