Геометрия, динамика, вселенная - Иосиф Розенталь
Шрифт:
Интервал:
Закладка:
Решение (62) обладает несколькими особенностями: 1) оно несингулярно: при любом t (кроме t = — ∞) масштабный фактор не обращается в нуль; 2) масштабный фактор возрастает со временем очень быстро; 3) из-за необычного уравнения состояния (63) экспоненциальное расширение неустойчиво: оно не может продолжаться неограниченно долго. Полезно отметить, что быстрое расширение и уравнение состояния (63) взаимосвязаны. Соотношение (63) означает существование отрицательного давления, т. е. сил, способствующих разбеганию частей системы, в данном случае частей Вселенной. Через сравнительно малый промежуток времени экспоненциальное расширение прекращается, в вакууме происходит перестройка — фазовый переход, в процессе которого энергия вакуума переходит в обычное вещество и кинетическую энергию расширения Метагалактики (или, точнее, метагалактик).
Все эти особенности деситтеровского решения, видимо, послужили причиной несколько неожиданных поворотов в истории космологии. На ее заре решение де Ситтера казалось весьма привлекательным вследствие его совершенной симметрии. В данной модели объем, занимаемый «Вселенной», изотропен в четырехмерном пространстве Минковского в отличие от фридмановской модели, в которой изотропия проявляется в трехмерном пространстве. Однако необычное уравнение состояния (63) резко ограничило пределы применимости этой модели. Ее обычно применяли к нереалистическому случаю: p = ε = 0, т. е. к пустому пространству.
Далее, к концу 40-х годов английские астрофизики Х.Бонди и Ф.Хойл выдвинули гипотезу о существовании стационарной Метагалактики, в которой постоянно рождается вещество из «ничего», так что ρ = const (t), и выполняется уравнение состояния (63) при p ≠ 0; ε ≠ 0. Однако экспериментальные данные об эволюции звездных объектов и, главное, отсутствие заметного числа античастиц в космическом пространстве (рождающееся вещество должно быть электронейтральным) противоречили теории стационарной Метагалактики, которая постепенно потеряла конкурентоспособность с фридмановской моделью.
Очередная переоценка деситтеровской модели была обусловлена прогрессом в понимании физического вакуума и объединения взаимодействий. Зависимость потенциала V(FI), представленная на рис. 7, существенно расширила возможности для интерпретации начальных стадий эволюции Метагалактики (Вселенной) на основе модели де Ситтера. Но теперь эта теория не была альтернативной к модели Фридмана, а дополняла ее. Произошел синтез обоих моделей. Успешное развитие этих представлений определилось большим коллективом ученых (А.Гус (США), А.Д.Линде (СССР), А.А.Старобинский (СССР) и многие другие видные физики).
Необходимо подчеркнуть, что детали новой модели, вызванной раздувающейся Вселенной, далеки от завершения и различаются у разных авторов, однако сейчас (1986 г.) существует единство взглядов о существенной роли деситтеровского расширения на начальной стадии (<10**-35 с) эволюции Вселенной. Расхождение в деталях не удивительно. Во-первых, потенциал V(FI), представленный на рис. 7, далеко не единственный, описывающий вакуум, — в разных вариантах объединенной теории существуют различные формы потенциалов. Зависимость V(FI) — одна из возможностей описания единственного скалярного (бозонного) поля. Можно допустить влияние и других бозонных и фермионных полей, изменяющих зависимость V(FI). Однако, во многих вариациях потенциала, как правило, остаются две его особенности, представленные на рис. 7. Во-первых, при T — > 0, кроме минимума при FI=0, в зависимости V(FI) существует один или несколько минимумов при FI.= 0, лежащие ниже минимума при FI=0. И, во-вторых, при T — > ∞ остается один минимум в зависимости V(FI) при FI=0. Поэтому зависимости, изображенные на рис. 7, можно считать типичными.
Общим для большинства современных моделей является главное — допущение, что в течение времени от планковского T| до T|≈10**-35 с (время, характерное для большого p u объединения, определяет окончание фазового перехода и имеет грубо оценочное значение) Вселенная развивалась по де Ситтеру и увеличила свои размеры от планковского (l|≈10**-33 см) до гигантского радиуса, существенно p превышающего размеры Метагалактики. В некоторых простых моделях размер пузыря, возникающего на деситтеровской стадии, достигает 10**(10**6) см (эту цифру полезно сравнить с размерами Метагалактики 10**28 см). Именно поэтому к такому пузырю можно применить понятие «Вселенная», которое и в данном случае отражает пределы нашего знания о мире в целом. Заметим, что огромные размеры пузыря определяются значением показателя экспоненты Ht в формуле (62). Действительно, полагая, что величина H определяется фундаментальными постоянными HP, G и c, нетрудно получить из соображений размерности, что H ~ t|**-1 ≈ 10*43 с**-1.
p Поэтому оказывается, что произведение Ht >> 1 и в процессе раздувания размеры пузыря становятся невообразимо большими, даже если в начале этого процесса его размеры ~l|.
p
Итак, в течение t| < 10**-23 с Вселенная развивается по
u де Ситтеру. Время этой стадии определяется конкретной формой потенциала V(FI). Приведенная здесь цифра отражает (причем грубо) только порядок величины. Что же происходит с гигантским пузырем при t >~ 10**-23 с? Вследствие неустойчивости системы, которая характеризуется уравнением состояния (63), она распадается на множество малых областей, которые являются зародышами метагалактик, развивающихся в дальнейшем по Фридману. Во время перехода от деситтеровской стадии к фридмановской происходит полная перестройка вакуума. Заключенная в нем огромная энергия переходит в реальные частицы и кинетическую энергию расширения метагалактик.
Таким образом, можно представить следующий сценарий (излюбленное слово космологов) эволюции Метагалактики. Флюктуации вакуума в области с планковскими масштабами могут приводить к началу экспоненциального расширения. Ему может предшествовать нагрев вакуума, который в данной области попадает в локальный минимум кривой 2 на рис. 7. Далее в течение времени t| ≈ 10**-35 с эти флюктуации развиваются
u по экспоненциальному закону до пузыря огромных размеров, который затем распадается на метагалактики, эволюционирующие по Фридману.
≡=РИС. 8
Схема таких переходов представлена на рис. 8. Синтез фридмановской и деситтеровской моделей в значительной степени разрешает упомянутые трудности фридмановской космологии. Как упоминалось, в решении (62) отсутствует сингулярность, поэтому можно представить, что Вселенная рождается в планковской области при отсутствии сингулярности.
В изложенном сценарии решается также проблема горизонта. Метагалактика — лишь небольшая часть Вселенной, ее расширение на деситтеровской стадии происходило настолько быстро, что причинная связь между различными областями Метагалактики сохраняется вплоть до планковских масштабов, когда весь анализ нужно проводить на совершенно иных, квантовых основаниях.
Слияние обеих основных космологических моделей решает и многие другие проблемы фридмановской космологии, о которых здесь не упоминалось. А.Д.Линде в своей статье, опубликованной в журнале «Успехи физических наук» (1984. Т.144, вып.2), называет около десятка таких проблем.
7. ПРИНЦИП ЦЕЛЕСООБРАЗНОСТИ
Размерность физического пространства N = 3 занимает среди геометродинамических характеристик особое место. Изотропию и однородность физического пространства — его евклидовость (псевдоевклидовость) — можно объяснить его простотой. Эти свойства пространства характеризуют его предельную симметричность. Пространство Евклида единственное максимально симметричное пространство с нулевой (экстремальной) кривизной. Экстремальность симметрии (хотя и в меньшей степени) характеризует и другие космологические пространства (пространство Лобачевского или сферу). Поскольку известно, что природа «любит» симметрию и экстремальность, то кажется естественным, что ее выбор остановился на симметричных пространствах.
В рамках модели раздувающейся Вселенной евклидовость пространства Метагалактики естественно интерпретируется в духе основных геометрических идей. Метагалактика — малая часть Вселенной, а малые области достаточно гладкого пространства можно хорошо описать с помощью евклидовой геометрии.
Совершенно иная ситуация возникает при попытке подойти к размерности физического пространства с математических позиций. Значение N = 3 практически невыделенное число. В натуральном ряду экстремальную величину имеют значения N = 1 (или при более общем подходе к геометрии N = 0) и N = ∞. Тем не менее хорошо известно, что размерность физического пространства в исследованных интервалах 10**-16 ~< r ~< 10**28 см не равна этим значениям.
Разумеется, спор о «фундаментальности» тех или иных величин имеет несколько схоластический характер, тем не менее можно привести один аргумент в пользу того, что размерность более фундаментальное понятие, чем, например, изотропия и однородность, и тем более другие характеристики пространств. Действительно, всем симметричным пространствам соответствует свое определенное значение N. Однако любому N ≥ 3 соответствует множество симметричных пространств, число которых возрастает с N. Число же пространств переменной кривизны для любого N вообще произвольно.