Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Медицина » Основы нейрофизиологии - Валерий Шульговский

Основы нейрофизиологии - Валерий Шульговский

Читать онлайн Основы нейрофизиологии - Валерий Шульговский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 26 27 28 29 30 31 32 33 34 ... 53
Перейти на страницу:

Отсутствие грубых изменений произвольных движений при паллидальных нарушениях объясняют неполным прерыванием выхода из базальных ганглиев, а также тем, что остается незатронутой черное вещество. Имеются некоторые доказательства того, что дискинез есть результат дисфункции в пределах стриатума (или нигростриарной дофаминовой системы), тогда как акинезия является результатом дисфункции в мезолимбической дофаминовой системе.

В клинике синдром поражения стриарной системы описывается как атетоз и хорея. При атетозе наблюдают медленные непрекращающиеся движения на фоне мышечного гипертонуса. В них обычно вовлекаются руки, менее часто – губы и язык, достаточно редко – шея и ноги. При хорее движения происходят на фоне мышечного гипертонуса; они быстрые, отрывистые в виде перемежающихся нерегулярных движений в непредсказуемой последовательности.

Болезнь Гетингтона, при которой хорея является ведущим моторным симптомом, нейроанатомически характеризуется деструкцией выходных нейронов стриарной системы. При билатеральном поражении субталамического ядра (тела Люиса) в непроизвольную моторную активность вовлекается дистальная мускулатура конечностей. Это так назывемый баллизм. При повреждении субталамического ядра только одной стороны непроизвольные движения наблюдаются лишь на противоположной стороне тела (гемибаллизм).

Изолированное повреждение эфферентных нейронов внутреннего сегмента бледного шара и ретикулярной части черной субстанции у экспериментальных животных не вызывает заметных двигательных расстройств, за исключением того, что все движения замедляются (брадикинезия).

У человека дофаминовая нигростриарная система наиболее обширно повреждается при болезни Паркинсона. Основными моторными нарушениями при ней являются брадикинезия, ригидность и тремор. Эти симптомы в полном объеме воспроизводятся у обезьян при разрушении дофаминовых нейронов мозга системным введением нейротоксина N-метил-4-фенил-1, 2, 3, 6-тетрагидропиридина (МФТП). Ригидность мышц, которая очень характерна для болезни Паркинсона, объясняют тонической активностью альфа-мотонейронов. В пользу этого говорит усиление полисинаптического (но не моносинаптического) рефлекса на растяжение.

Вопросы

1. Состав стриарной системы.

2. Клинические симптомы поражения стриарной системы.

Литература

Механизмы деятельности мозга человека. Ч. I. Нейрофизиология человека. Л.: Наука,1988.

Физиология движений: Руководство по физиологии. Л.: Наука, 1976.

НИСХОДЯЩИЕ СИСТЕМЫ ДВИГАТЕЛЬНОГО КОНТРОЛЯ

Физиология нисходящих путей от коры больших полушарий.

В эволюции головного мозга заметно увеличивается площадь коры больших полушарий. В результате у высших млекопитающих, включая приматов, развивается плащ, который полностью покрывает большие полушария. Поля коры, расположенные рострально относительно центральной (у приматов) или крестовидной (у хищных) борозд, участвуют в контроле двигательной функции. Здесь локализованы центры движения глаз, моторики речи, а также центры, обеспечивающие движения конечностей и туловища.

В 1870 г. немецкие исследователи Фрич и Гитциг методом электрической стимуляции мозга собак впервые определили границы моторной коры. По современным данным, первичная моторная кора, управляющая движениями туловища и конечностей, соответствует полям 4 и 6 (по Бродману) (см. приложение 1). Ростральнее находятся корковые поля, управляющие движениями глаз (поля 8, 10) и речи (поля 44, 46). Анатомическим признаком моторных областей коры является агранулярность (невыраженность IV слоя коры). Кроме первичной моторной коры, в двигательном контроле у высших млекопитающих участвуют также премоторная, дополнительная моторная области коры, а также поле 5 (ростральная теменная кора).

Нисходящие пути двигательного контроля млекопитающих в соответствии с организацией их спинальных механизмов принято делить на латеральные (кортико- и руброспинальные) и медиальные (вестибуло- и ретикулоспинальные) проводящие системы. Латеральные проводящие системы в филогенезе млекопитающих возникли позже медиальных и обслуживают преимущественно движения конечностей, в том числе связанные с локомоцией. В отличие от этого медиальные системы преимущественно имеют отношение к рефлексам позы и установки головы и тела в пространстве.

Кортикоспинальная система двигательного контроля. Пирамидный (кортикоспинальный) тракт у млекопитающих – филогенетически самый молодой двигательный тракт. Он образован аксонами крупных нейронов, тела которых находятся в пятом слое 4-го и 6-го полей коры. У обезьян большая часть волокон берет начало от 4-го (31%) и 6-го (29%) полей коры, но 40% начинаются от теменной коры. Точные данные для человека отсутствуют, но известно, что не менее 60% волокон пирамидного тракта берут начало от поля 4. У человека пирамидный тракт одной стороны содержит более 1 млн. волокон.

На спинальном уровне у млекопитающих описано два кортикоспинальных тракта: мощный латеральный пирамидный тракт, волокна которого полностью перекрещиваются на уровне первого шейного сегмента, и неперекрещивающийся вентральный пирамидный тракт. Морфологические исследования показали, что у кошек и обезьян вентральный тракт заканчивается преимущественно в грудных сегментах спинного мозга. Этот тракт изучен недостаточно. Волокна латерального пирамидного тракта прослеживаются до поясничных сегментов спинного мозга. Согласно данным электрофизиологии латеральный пирамидный тракт активирует нейроны серого вещества основания заднего рога спинного мозга, которые, в свою очередь, активируют мотонейроны вентрального рога. Только у животных с подвижными фалангами пальцев (приматы, крыса, енот и некоторые другие) волокна пирамидного тракта активируют эти мотонейроны непосредственно.

Экспериментально установлено, что мотонейроны, имеющие моносинаптические возбудительные связи с моторной корой, в то же время подвержены активации со стороны первичных окончаний мышечных веретен (волокна группы 1а) (рис. 5.20). По мнению исследователей, это может указывать на то, что эти мотонейроны наряду с прямым входом от моторной коры могут вовлекаться также в активность афферентов от мышечных веретен. При этом гамма-мотонейроны могут активироваться не только из моторной коры больших полушарий, но и из других головного мозга – мозжечка, красного ядра, стриатума и пр.

Электрическая стимуляция волокон пирамидного тракта в опытах на животных (кошки, обезьяны) вызывает преимущественно флексию соответствующей конечности. Это находится в полном соответствии с результатами изучения отдельных мотонейронов спинного мозга: флексорные мотонейроны на стимуляцию пирамидного тракта реагируют деполяризацией, а экстензорные – гиперполяризацией или ответом смешанного типа (де- и гиперполяризацией). При этом влияния, распространяющиеся по пирамидному тракту, носят фазический, а не тонический характер, но порог активации гамма-мотонейронов, как правило, ниже, чем альфа-мотонейронов. Корковые проекции на альфа- и гамма-мотонейроны соответствующей мышцы совпадают.

В первичной моторной коре полностью представлена соматическая мускулатура. Эффекты локальной электрической стимуляции проявляются преимущественно в активации соответствующих флексорных мышц. Более тонкие микроэлектродные исследования показали, что активацию пула мотонейронов, иннервирующих определенную мышцу, можно получить из довольно ограниченной области коры – корковой колонки. Такая колонка, например в моторной коре обезьяны, имеет площадь от 3 до 7 мм2. Как правило, в ответ на электрическую стимуляцию коры ВПСП на мембране мотонейрона нарастал ступенчато, что могло указывать на полисинаптическое проведение возбуждения к нему. Это полностью соответствует и нейроанатомическим данным, согласно которым только около 7% (у приматов) волокон кортикоспинального тракта образуют моносинаптические контакты на мотонейронах, остальные проводят возбуждение к ним через интернейроны (полисинаптически).

Современные знания о нейронной организации моторных полей коры больших полушарий в значительной степени основаны на представлении о колончатом (модульном) строении коры. На основании исследований тонкой анатомии коры было выдвинуто предположение о наличии в ней вертикальных объединений нейронов. Это было подтверждено также в физиологических экспериментах: было показано, что отдельные нейроны в такой колонке (диаметром 0,4–1 мм) имеют рецептивные поля в одном районе, например на кожной поверхности руки. Эти результаты были в дальнейшем подтверждены методом микростимуляции. Установлено, что, активируя у кошки и обезьяны небольшой участок коры электрическим током (стимуляцию производили через металлический внутрикорковый микроэлектрод), можно определить низкопороговую область активации отдельной мышцы. С помощью этого было показано, что эфферентные зоны, активирующие различные мышцы данного сустава конечности, сгруппированы в данной корковой колонке и могут частично перекрываться. Есть основания считать, что такая колонка функционирует как единица коркового моторного выхода, по крайней мере для мускулатуры дистальных (фаланги пальцев) частей конечности. Для аксиальных мышц (мышцы туловища) подобные колонки не имеют столь же четко очерченных границ, и каждая мышца может быть многократно представлена в различных корковых колонках.

1 ... 26 27 28 29 30 31 32 33 34 ... 53
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Основы нейрофизиологии - Валерий Шульговский.
Комментарии