Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт
Шрифт:
Интервал:
Закладка:
Я называю это находкой, а не открытием, потому что здесь воображение математиков не вдохновлялось миром природы. Если эта штука и присутствовала где-то, ожидая, пока ее обнаружат, то это было очень странное место – мир человеческого воображения, правил логики и структуры. Это был новый тип числа, настолько новый, что это число получило название «мнимое». Такое название используется и сегодня, и для большинства из нас мнимые числа остаются совершенно чужеродной сущностью, хотя наша жизнь все больше от них зависит.
Вы, конечно, слышали о числовой прямой.
Познакомьтесь теперь с числовой плоскостью.
* * *
Чтобы понять, откуда взялась эта странная находка, а также почему она появилась, нужно сначала взглянуть на традиционные типы чисел. Числа – это настолько обычно, настолько знакомо, что очень легко недооценить все их тонкости. Мы знаем, что два плюс два будет четыре, а пятью шесть – тридцать. Но что такое «два», «четыре», «пять», «шесть» и «тридцать»? Это не слова: в разных языках для обозначения одних и тех же чисел используются разные слова. Это не символы 2, 4, 5, 6, 30: в разных культурах используются разные символы. В двоичной записи, которой пользуются в компьютерных делах, эти числа выглядят как 10, 100, 101, 110 и 11110. А что такое символ?
Все было гораздо проще, когда число рассматривалось как непосредственное описание природы. Если у вас десять овец, то число десять есть заявление о том, сколько именно у вас овец. Если вы продали четыре из них, у вас останется шесть. Числа представляли собой, по существу, средство счета. Но когда математики стали использовать числа все более заумными способами, этот прагматический взгляд начал казаться довольно шатким. Если вы не знаете, что такое числа, то разве можете быть уверены, что ваши расчеты никогда не будут противоречить друг другу? Если фермер пересчитает одну и ту же отару овец дважды, – обязательно ли результат будет одинаковым? Кстати, что мы имеем в виду, когда говорим «пересчитает»?
В XIX веке «придирки» такого рода начали возникать, потому что к тому моменту математики успели уже не единожды расширить концепцию числа. Каждая новая версия включала в себя все, что было раньше, но связь с реальностью при этом становилась все менее явной. Сначала на сцене были только натуральные, или счетные, числа 1, 2, 3….. Далее появились дроби, такие как 1/2, 2/3 или 3/4. В какой-то момент в ряды чисел тихонько проскользнул нуль. До этого соответствие с реальностью было, в общем-то, непосредственным: возьмите два апельсина и еще три апельсина и сосчитайте их все, чтобы убедиться, что всего у вас оказалось пять апельсинов. Взяв кухонный нож, я могу наглядно продемонстрировать вам пол-апельсина. Ну а нуль апельсинов? Ну, это пустое место.
Даже здесь уже наблюдаются сложности. Пол-апельсина – это, строго говоря, не число апельсинов. Это вообще не апельсин, а всего лишь его кусок. Существует множество способов разрезать апельсин пополам, и не все они выглядят одинаково. Проще показывать на кусках веревки – при условии, что мы режем веревку на части очевидным способом и не делаем никаких глупостей, например не расплетаем ее на пряди и волокна. Здесь снова все просто. Длина одной веревки равна половине длины другой, если две веревки, равные по длине первой, при соединении друг с другом имеют длину, равную длине второй. Дроби лучше всего работают с измерением разных вещей. Древние греки считали, что с измерениями работать легче, чем с числовыми символами, поэтому Евклид повернул эту идею задом наперед. Вместо того чтобы использовать числа для измерения длины отрезка, он использовал отрезки для представления чисел.
Следующий шаг – отрицательные числа – несколько сложнее, поскольку мы не можем наглядно продемонстрировать минус четыре апельсина. С деньгами проще, там отрицательное число можно интерпретировать как долг. Все это понимали в Китае около 200 года, о чем свидетельствует первый известный нам письменный источник «Математика в девяти книгах», хотя сама идея, несомненно, намного старше. Когда числа ассоциируют с измерениями, интерпретации отрицательных величин возникают совершенно естественно. Например, отрицательную температуру можно интерпретировать как температуру ниже нуля, тогда как положительная температура выше нуля. В некоторых случаях положительные измерения лежат справа от некоторой точки, тогда как отрицательные – слева, и т. д. Отрицательное противоположно положительному.
В наши дни математики уделяют много внимания различиям между этими типами числовых систем, но для обычного пользователя все они являются вариантами одной темы: это числа. Мы с готовностью принимаем такую довольно наивную договоренность, поскольку во всех этих системах работают одни и те же правила арифметики и каждый новый тип чисел просто расширяет старую систему, ничего не меняя в том, что нам известно. Преимущество расширения концепции числа состоит в том, что каждый раз появляется возможность производить «арифметические действия», недоступные прежде. В натуральных числах мы не можем разделить 2 на 3, в дробях – можем. В натуральных числах мы не можем вычесть 5 из 3, в отрицательных числах – можем. Все это делает математику проще, потому что можно перестать беспокоиться о том, разрешены те или иные арифметические операции или нет.
* * *
Дроби позволяют делить разные вещи на сколь угодно мелкие части. Мы можем разделить метр на миллиметры, составляющие одну тысячную долю его длины, или на микрометры, составляющие одну миллионную, или на нанометры (это уже одна миллиардная) и т. д. Названия у нас закончатся намного раньше, чем нули. Практические измерения никогда не обходятся без небольших ошибок, поэтому дробей нам вполне достаточно для всех целей. Мало того, мы можем обойтись только дробями со знаменателем, равным степени десяти, – посмотрите на любой электронный калькулятор. Но для важных теоретических целей, а также для сохранения порядка в математике дробей, как оказалось, не хватает.
Последователи древнегреческого культа пифагорейцев верили, что Вселенная управляется числами (кстати, подобные взгляды до сих пор преобладают в самой передовой физике, хотя и не в столь буквальном виде). Пифагорейцы признавали только натуральные числа и положительные дроби, поэтому их система взглядов была потрясена до основания, когда