Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Техническая литература » Шипение снарядов - Александр Прищепенко

Шипение снарядов - Александр Прищепенко

Читать онлайн Шипение снарядов - Александр Прищепенко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 65
Перейти на страницу:

Если стойкость цели по отношению к ударной волне известна — можно определить высоту подрыва заряда данной мощности, при которой площадь поражения целей будет максимальной, или — если носитель доставляет заряд с высокой точностью — минимизировать мощность заряда.

Рис. 3.55 Читатель, возможно, удивится, но изображенное на снимке называется… компьютером. Такие механические вычислители на заре ядерной эры имели командиры, чтобы рассчитывать эффекты ядерных взрывов

Правда, могла поджечь деревянные постройки и причинить тяжелые ожоги вспышка света (рис. 3.57), но то же самое делал и входивший в моду напалм (рис. 3.58)…

А вот непривычное «общественности», не превращающее цель в головешки или тривиальную груду развалин, конечно же, почиталось «варварством». Чтобы прикинуть, как это варварство использовать порациональнее, пригляделись к тому, что возмутительно уклонялось от созидания главных поражающих факторов — к ускользавшим из огненного шара нейтронам и высокоэнергетичному («жесткому») гамма излучению.

Рис. 3.56 МБР базируется в шахте, крышка которой весит многие десятки тонн (снимок вверху), и для получения данных о стойкости шахты по отношению к ударной волне необходим чрезвычайно мощный взрыв и колоссальные расходы на такой опыт. Однако автомодельность процессов газовой динамики дает возможность оценить стойкость на макете: на нижнем левом снимке — «обдутая» копия шахты МБР LGM-118A в масштабе 1:8 в воронке от модельного взрыва. Данные в этом случае получены при подрыве всего нескольких тонн обычного ВВ (правее) Рис. 3.57 Эффекты воздействия светового излучения ядерного взрыва в Хирошиме. Там, где на кимоно этой японки был темный рисунок, поглощено больше лучистой энергии, нагрев прилегавший к телу ткани вызвал тяжелые ожоговые поражения. Ткань светлых оттенков отразила значительную часть излучения, послужив защитой

Выход гамма излучения можно повысить, окружив заряд конвертером — веществом, ядра которого интенсивно испускают гамма-кванты под действием нейтронов, но на поле сражения прямое действие гамма излучения уступает по боевому эффекту и ударной волне, и свету. Оно может, например, причинить неприятности электронике, но — в огромных дозах (десятках миллионов рад [68]). От таких доз плавятся металлы, а ударная волна с куда меньшей плотностью энергии уничтожает цель без подобных излишеств.

Рис. 3.58 На фотографии слева — «гриб» не от ядерного взрыва, а от срабатывания напалмовой «зажигалки». Явления похожи вследствие подобия конвективных течений газа. Такое течение возникает, когда в поле тяжести пузырь нагретого (и потому — более легкого) газа поднимается вверх, чуть-чуть поджимая перед собой «омывающий» его холодный воздух (ни о какой ударной волне, понятно, речи в этом случае нет). Ну а позади пузыря, в область разреженного его движением воздуха, втягиваются пыль и дым, образуя «ножку» гриба. Напалм — горючее (бензин, авиационный керосин), загущенное солями жирных кислот, преимущественно нафтеновых и пальмитиновых, откуда и название: «На-Палм». Впервые применено во Второй мировой войне американскими войсками против японцев, оборонявшихся в многочисленных пещерах на островах Тихого океана. Смесь солей — сыпучий порошок, она вполне безопасна. Будучи разбавлена бензином, смесь приобретает консистенцию студня, и, когда этот «студень» воспламеняется, жар вокруг очень силен. Горящий напалм становится жидким, затекает в щели. Его «звездным часом» стала война в Корее, (1950–1953 гг.), где самолеты тактической авиации США штурмовали зажигательными баками густые цепи китайских «народных добровольцев», которые наступали, не считаясь с потерями от артиллерийского и пулеметного огня. Позже, во Вьетнаме, в напалм стали добавлять капсулированные шарики белого фосфора. Такую смесь нельзя было погасить — она самовоспламенялась (снимок справа), а ожоговые травмы от нее, из-за присутствия фосфора стали еще кошмарнее

Если же плотность энергии гамма излучения меньше, оно становится безвредным для сделанной из железа технике, вроде тех же пушек — а ударная волна и тут может сказать свое слово (рис. 3.59)…

Так что прямое гамма облучение существенного боевого эффекта не обеспечивает, чего нельзя сказать об эффектах вторичных, порожденных им же…

Рис. 3.59 Действие ударной волны по наземным целям можно усилить, поскольку при отражении ударной волны от грунта (ударно-волновой импеданс которого довольно высок) давление возрастает. Оптимальная высота подрыва зависит от энерговыделения заряда и стойкости целей. На теневом снимке подрыва всего 10 мг динитродиазофенола — отражение волны. Давление максимально в области, где падающая и отраженная волны сопрягаются. На снимке справа, за снятым обтекателем авиабомбы Мк-17 — устройство, обеспечивающее высотный подрыв

…Начинается все с Комптон-эффекта [69] в ходе которого образуются электроны отдачи. Магнитное поле Земли, не сообщая заряженной частице кинетическую энергию, «закручивает» ее траекторию (рис. 3.60). Но движение, отличное от равномерного и прямолинейного, есть движение с ускорением — так учит нас школьный курс механики; хотя и не изучаемая подробно в школе, наука электродинамика учит еще и тому, что двигающийся с ускорением заряд излучает. Излучение это тоже электромагнитное, то есть представляет собой колебания электрического и магнитного полей — как и свет, со скоростью которого они распространяются. Характеристики электромагнитного импульса ядерного взрыва (ЭМИ ЯВ) отличаются от характеристик породившего его гамма излучения лишь количественно, но зато — на много порядков. Начнем с того, что в энергию ЭМИ переходит лишь 0,6 % энергии гамма квантов, а ведь их доля в балансе энергии взрыва сама по себе мала. Еще более различаются частоты колебаний: у ЭМИ — килогерцы-мегагерцы, у его «родителя» — на пятнадцать порядков бо́льшие.

Рис. 3.60 В иллюстрации Комптон-эффекта (слева вверху), вызывающего формирование ЭМИ ЯВ, многие объекты стилизованы: электромагнитные излучения изображены простыми синусоидами, хотя они представляют колебания напряженностей электрического и магнитного полей. Изображение атома несколько ближе к реальности: электроны в нем не представляют компактные частицы, вращающиеся по орбитам, а в соответствии с принципом Гайзенберга «размазаны» по ним (автор также попытался изобразить орбиты, соответствующие различным энергетическим состояниям). Принцип неопределенности следует из квантовой природы частиц: точности одновременного определения координаты и скорости частицы связаны константой. Характерный размер ядра на несколько порядков меньше размеров электронных орбит (а не в несколько раз, как на рисунке), но в ядре сосредоточена практически вся масса атома. Оно также может находиться в различных энергетических состояниях (основном или возбужденных). Углы рассеяния и отдачи при Комптон-эффекте невелики, так что от точки взрыва расходится ток электронов, быстро опережающих намного более тяжелые ионы, за счет чего происходит разделение зарядов (справа вверху). Сферически-симметричная система зарядов излучать не может, однако плотность воздуха меняется с высотой, что вносит асимметрию и в плотность зарядов. Параметры такого электрического диполя при движении зарядов разных знаков меняются, при этом генерируется излучение, мощность которого пропорциональна второй производной дипольного момента по времени. Деформация магнитного поля образованным ядерным взрывом, хорошо проводящим плазмоидом (не в масштабе, в центре справа) вызывает излучение вследствие изменения магнитного момента. Помимо Комптон-эффекта, при ядерном взрыве на большой высоте происходят и другие взаимодействия, вызывающие переходы атомов (в основном — кислорода и азота) на возбужденные уровни и последующее их высвечивание в различных областях видимой части спектра. Становится видна структура магнитных силовых линий нашей планеты (внизу слева), а также происходит красивое явление, известное как «северное сияние» (естественным образом оно вызывается потоками заряженных частиц от вспышек на Солнце)

Но возникновение ЭМИ — не только результат «закручивания» электронов. Вклад вносит и излучение электрического диполя, образованного носителями разных знаков (плотность зарядов меняется с высотой, вверху справа). Еще одна причина — возмущение проводящим плазмоидом магнитного поля Земли.

1 ... 32 33 34 35 36 37 38 39 40 ... 65
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Шипение снарядов - Александр Прищепенко.
Комментарии