Юный техник, 2001 № 12 - Журнал «Юный техник»
Шрифт:
Интервал:
Закладка:
ПРОЕКТ «МЕЖДУНАРОДНАЯ ШКОЛЬНАЯ ОБСЕРВАТОРИЯ»
В мае 2000 года в городе Куала-Лумпур, в Малайзии, состоялась конференция, на которой представители Британского совета, Университета им. Джона Мура в Ливерпуле и Японской ассоциации астероидной защиты приняли решение о создании «Международной школьной обсерватории». Первоначально идею проекта поддержали девять стран. В конце октября 2000 года в Ливерпуле проходил конгресс, на котором проекту присоединились еще четыре европейских государства: Россия, Польша, Венгрия и Испания.
ОСНОВНЫЕ ЦЕЛИ ПРОЕКТА:
• предоставить школьникам всего мира доступ к международным обсерваториям и профессиональным автоматическим телескопам;
• обеспечить эффективное сотрудничество и обмен опытом между школьниками из разных стран в области астрономии и смежных с нею наук;
• открыть для школьников и преподавателей доступ к существующим источникам научной и технической информации в области астрономии, физики и других наук;
• реализовать идею образовательного наполнения Интернет-пространства;
• используя интердисциплинарный подход, подготовить учебные материалы по астрономии, физике, математике, дизайну и технологии, английскому языку, гуманитарным наукам и предметам в области экономики и финансов.
В ближайшее время возможность пользоваться автоматическими телескопами и обсерваториями, а также обмениваться опытом по сети Интернет получат школьники 13 стран.
Всего в проекте планируется участие примерно 40 школ. Сотрудничество школьников будет осуществляться по принципу двустороннего партнерства, причем британским и японским школам отводится роль определяющих дальнейшее развитие совместной работы.
Школы, выразившие желание присоединиться к проекту, но не вошедшие в число активных участников, смогут следить за результатами исследований посредством участия в Интернет-конференциях на официальном сайте проекта www.bciso.net.
С конца апреля 2001 года информацию о проекте на русском языке можно увидеть на сайте www.iso.nm.ru.
АВТОМАТИЧЕСКИЙ ТЕЛЕСКОП
Автоматический телескоп представляет собой автономное устройство, управление которым осуществляется из обсерватории, находящейся, как правило, на значительном расстоянии от самого прибора. Автоматические телескопы устанавливаются в высокогорной местности, где климатические условия характеризуются крайне низким процентом облачности в темное время суток.
Исследование объектов Вселенной посредством автоматического телескопа осуществляется следующим образом. Ученые-астрономы посылают свои заявки на наблюдения в обсерваторию, осуществляющую контроль за работой прибора. Поступившие заявки формируют график наблюдений, который ежедневно по сети Интернет передается на телескоп. С наступлением темноты компьютеры и сенсорные системы автоматически приводят телескоп в действие, и, согласно установленному графику, начинается изучение звездного неба. На следующий день вся информация в графическом изображении передается по Интернету в обсерваторию.
Проект «Международная школьная обсерватория» предусматривает работу школьников с тремя автоматическими телескопами. Ливерпульский телескоп, работа над установкой которого закончится в 2001 году, будет находиться на острове Ла-Пальма на Канарах. Контроль за работой прибора будет осуществляться из Университета им. Джона Мура в Ливерпуле. Два других телескопа, задействованных в проекте, находятся в японском Центре астероидной защиты Бисей (г. Окаяма). Они позволяют идентифицировать астероиды и другие космические объекты, пролетающие на близких расстояниях от земной орбиты и представляющие серьезную опасность для нашей планеты.
Школьники, представившие наиболее интересные и подробно обоснованные заявки на наблюдения, получат возможность работать с одним из телескопов, а сами заявки будут размещены на сайте http://www.schoolobservatory.org.uk/
Более подробную информацию о телескопах можно найти на сайтах
http://teleskope.livjm.ac.uk/ http://www.spaceguard.or.jp/bsgc/pamphlet/index.htm
ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ LTIMAGE
Информация, полученная автоматическим телескопом, передается ученым по сети Интернет в виде файлов в формате FITS (Flexible Image Transport System). Эти компьютерные файлы содержат данные о телескопе, погодных условиях, дате, времени наблюдения и т. д., позволяющие проводить точные научные исследования. Работа с FITS-файлами требует профессионального программного обеспечения (ПО), которое школьникам достаточно трудно использовать. Поэтому учеными Университета им. Джона Мура в Ливерпуле было разработано специальное ПО (LTImage), позволяющее проводить астрономический анализ графических данных, используя компьютеры, установленные в обычных школах.
LTImage дает возможность пользователям: работать с графическими данными с разрешением 2048x2048 пикселей; изменять цвет и размер изображения; работать одновременно с четырьмя графическими файлами; сохранять изображение в формате BMP с последующей его вставкой в текстовый документ или размещением на web-сайте.
Планируется, что в будущем характеристики LTImage будут включать: точное измерение координат объектов и расстояния между ними; фотометрию (измерение яркости); большее количество опций, связанных с загрузкой и сохранением файлов.
LTImage ориентировано на школьников, имеющих разные уровни знания и принадлежащих к нескольким возрастным категориям. Существует четыре вида ПО LTImage: для начинающих (Beginner), учеников (Apprentice), исследователей (Researcher), экспертов (Expert). Все виды LTImage имеют стандартный набор функциональных характеристик и отличаются лишь деталями интерфейса. Более подробную информацию о ПО LTImage можно получить на сайте http://www.sehoolsobservatory.org.uk/staff/sres/ltimgl.htm
Планируется, что школы, являющиеся участниками проекта, в ближайшем времени бесплатно получат ПО LTImage.
ТЕХНИЧЕСКИЕ ВОЗМОЖНОСТИ РОССИЙСКИХ ШКОЛ
На базе Муниципального центра образования г. Зеленогорска Красноярского края действует астрономическая лаборатория, оснащенная компьютерами на базе процессора Celeron-333 с ОЗУ 32 МБ и жестким диском емкостью 4 ГБ и 32-скоростным CD-ROM. Используемая операционная система — Windows-98 и 1Е-5. Подключение к локальной сети Интернет осуществляется через Firewall и Proxy серверы. Для наблюдения за небесными телами используются телескопы Meade LX-200 SCT, CCD SBIG-ST6, а также самодельные телескопы с диаметром зеркал до 0,15 м.
Более подробную информацию о деятельности лаборатории можно получить на сайте http://www.zgr.kts.ru/astron/index.htm.
Контакт: Сергей Гурьянов. Муниципальный центр образования: Красноярский край, г. Зеленогорск, ул. Бортникова, д.13. Тел.: (39169) 35-223. E-mail: [email protected]
Учащиеся лицея № 40 г. Нижний Новгород имеют возможность пользоваться десятью компьютерами на базе процессоров Pentium 75 и Pentium 100. Лицей также оснащен десятью рабочими станциями на базе процессора Celeron 500 с ОЗУ 64 и 100 МБ и с жестким диском емкостью 10 и 20 ГБ. Используемая операционная система — Windows-98/2000. Подключение к локальной сети Интернет осуществляется через Firewall сервер. Для наблюдения за небесными телами используются телескопы обсерватории на базе факультета астрономии Нижегородского педагогического университета. В распоряжении студентов и школьников два телескопа — АВР-3 и Zeiss Cassegren 150.
Контакт: Алексей Митюгов. Лицей № 40: г. Нижний Новгород, ул. Варварская, д. Тел.: (8312) 331–949. E-mail: [email protected]
ИНФОРМАЦИЯ К РАЗМЫШЛЕНИЮ
Три колеса. Продолжение давнего спора
Жизнь без автомобиля сегодня немыслима. Но очень многие согласятся, что именно автомобиль делает жизнь на земле все более затруднительной. Именно автомобили сжигают едва ли не треть всей добываемой в мире нефти, да при этом еще загрязняют окружающую среду. А нефти на земле осталось не так уж много, лет на тридцать. Что потом?
Но потребляет автомобиль не только топливо из бензобака. Его производство тоже забирает у человечества энергию — то же самое топливо.
Еще в 70-е годы американцы подсчитали, что на производство легкового автомобиля расходуется столько же энергии, сколько содержится в бензине, который он сжигает за все время своего существования. Речь тогда шла об автомобиле с массой 1360 кг и расходом топлива 13–16 л на 100 км и пробегом до сдачи в металлолом 160 тысяч км.
С тех пор экономичность двигателя значительно возросла, а вот расход энергии на производство одного килограмма металла уменьшился незначительно. Так что и сегодня производство автомобилей ложится на энергетику планеты большим бременем.