Тайная жизнь тела. Клетка и ее скрытые возможности - Михаил Вейсман
Шрифт:
Интервал:
Закладка:
Для того чтобы понять, как действуют эти мини-электростанции, сначала вспомним несколько терминов. Уверена, вы не раз слышали об АТФ. Но что это такое? Полное название – аденозинтрифосфорная кислота. Это особое вещество, которое с полным правом можно считать аккумулятором энергии. Дело в том, что в нем связи между атомами фосфора и кислорода являются макроэргическими, то есть при их разрыве выделяется большое количество энергии.
Задача митохондрии – синтезировать, то есть собрать молекулу АТФ из подручных средств, которые можно найти в клетке. Для этого она использует самые различные механизмы.
Основные закономерности преобразования энергии митохондриями изложены в одноименной статье лауреата Государственной премии СССР профессора А. Д. Виноградова. Это подробный рассказ, понятный (честно говоря) только узким специалистам. Но если немного упростить изложенное, то завеса тайны поднимется и для широкого круга читателей.
Итак, первый механизм называют «клеточным дыханием». Это цикл химических реакций, проистекающих с участием кислорода, – от этого и пошло название. В каждой реакции выделяется совсем небольшое количество энергии, но ее достаточно, чтобы произошла следующая реакция и так далее, пока не будет собрана «аккумуляторная батарейка» – АТФ.
Для своей работы митохондрии могут использовать только самые простые составляющие глюкозы (углеводов, попадающих в наш организм с едой). Поэтому первый этап дыхания – это подготовка глюкозы к использованию, или гликолиз. Глюкоза расщепляется вне митохондрий – в цитоплазме. Если вспомнить школьный курс органической химии, можно иметь в виду, что в ходе гликолиза молекула глюкозы превращается в два остатка уксусной кислоты. В митохондрию они «проталкиваются» специальным переносчиком – коэнзимом А. Коэнзим А присоединяет к себе остаток уксусной кислоты, превращается при этом в ацетилкоэнзим А, или, кратко, ацетил-КоА, и в таком виде «протискивается» сквозь внешнюю мембрану митохондрий.
Тут «контрабандиста» уже поджидают. Захваченные им атомы надо пересадить с коэнзима и пустить в дело дальше. В этой операции участвует так называемый цикл Кребса – это кольцевая последовательность реакций, в ходе которых исходное вещество возвращается в свое первоначальное состояние. Этот цикл можно сравнить с водяной мельницей – вода льется на лопасти колеса и заставляет его двигаться, но само колесо при этом остается на месте.
Как это происходит? Давайте считать началом цикла молекулу щавелевоуксусной кислоты. В первой же реакции на нее переносится с ацетил-КоА остаток уксусной кислоты (он состоит из двух атомов углерода, трех – водорода, и одного атома кислорода), в результате получается изолимонная кислота. В ходе остальных реакций цикла атомы-перебежчики (те, которые были названы выше) отделяются от изолимонной кислоты и следующих молекул органических кислот, и в последней реакции снова получается щавелевоуксусная кислота. Точнее говоря, в каждом цикле от изолимонной кислоты и получающихся из нее молекул отделяются составные части остатка уксусной кислоты, присоединенного два цикла назад.
Реакции цикла Кребса происходят в жидкости, заполняющей митохондрию, а вот следующий процесс – окислительное фосфорилирование – в ее внутренней мембране. В тончайшем слое мембранной ткани «дрейфует» пять типов специальных окислительных белков. Они «вылавливают» освобождающиеся в процессе цикла Кребса атомы водорода и «сжигают» их с образованием молекул воды. Это делается так: белок № 1 отбирает у водорода один электрон и передает его белку № 2, тот – белку № 3, и так далее, до белка № 5. Белки № 2 и № 4 имеют небольшие размеры, поэтому в мембране они двигаются значительно быстрее № 1, 3 и 5, и по сути дела, играют роль курьеров, разносящих электроны по назначению. При этом энергия электрона все время уменьшается. Белок № 5 накапливает четыре таких электрона, а затем производит реакцию образования воды:
4 e- + O2 + 4H+ = 2 H2O.
Энергию, выделяющуюся при прохождении электрона по дыхательной цепи, белки № 1, 3 и 5 расходуют на выбрасывание протонов изнутри митохондрии в пространство между ее мембранами. В этом пространстве создается положительный заряд, а внутри митохондрии – отрицательный.
По сути, глюкоза нужна нашему организму именно как «горючее» для производства энергии. Это – важный момент в понимании энергетической сущности процессов, происходящих в митохондриях. Разница зарядов заставляет протоны стремиться обратно, внутрь, но плотная внутренняя мембрана их не пропускает. Тогда протоны начинают искать «лазейки» или «шлюзы». Такими шлюзами выступают специальные молекулы АТФ-синтетазы. Само название молекул подсказывает, что как раз они занимаются «сборкой» наших «батареек» – АТФ. Они синтезируют молекулу, пропуская протоны через себя и запасая энергию во внутренних связях АТФ.
Вот так работает самая крошечная электростанция в мире.
Часть II. ДНК – история человечества
Ученые подсчитали, что каждый белок, составляющий основу клетки, живет не больше трех часов. Затем он расщепляется и выводится из организма, чтобы дать место новому образованию. Получается, что каждые три часа состав нашего тела полностью обновляется! То есть мы не та застывшая структура, какой привыкли себя воспринимать, а в буквальном смысле – поток протонов и электронов, на которые распадаются строительные материалы нашего тела.
Но как так получается, что в постоянном течении и изменении мы сохраняем постоянные черты? Почему у нас цикл за циклом образуются одни и те же клетки с определенными характеристиками? Почему рук, как правило, две, цвет глаз и волос практически не меняется (если только с возрастом или под воздействием химических средств) и даже у характера наблюдается редкостное постоянство?
Я не открою тайну, если скажу, что за процесс, при котором у собак рождаются щенки, а не котята, а мы остаемся людьми при всех выкрутасах цивилизации и природы, отвечают гены, или, по-научному, молекулы ДНК. Но как им это удается? Давайте посмотрим, что об этом думают самые видные ученые мира.
Глава 1. Кто открыл ДНК?
Сначала давайте познакомимся: ДНК – это дезоксирибонуклеиновая кислота. Мало что прояснилось? Могу вас понять. Ведь над секретом этого химического соединения ученые бьются уже не первое столетие. Официально роль первооткрывателей приписывают английским биологам Дж. Уотсону и Ф. Крику, описавшим структуру в 1953 году, но на самом деле история началась гораздо раньше…
История молодого ученого
В середине XIX века в Германии работал молодой швейцарец – Фридрих Мишер. Это был увлеченный юноша, свято веривший, что будущее – за наукой. Его тяга к знаниям перевешивала все внутренние запреты и ограничения. Впрочем, у врачей, как правило, довольно специфическое отношение к жизни…
Как бы то ни было, свое первое значимое открытие Мишер сделал, отмывая гной с повязок больных в хирургическом отделении. Делал он это не забавы ради – наблюдения за выздоравливающими убедили его в том, что чудо исцеления принадлежит отнюдь не лекарям, это всецело заслуга самого организма. К тому времени уже были открыты клетки, отвечающие за иммунитет, и именно в поисках лейкоцитов Мишер занимался «стиркой» бинтов.
Он погружал повязки в разные растворы, пытаясь выделить «чистые» лейкоциты. И обнаружил, что помимо самого белка в клетках содержится некое загадочное соединение. Если белок растворяется в кислоте и выпадает в осадок в щелочных растворах, то неизвестное вещество вело себя с точностью до наоборот – оно образовывало осадок при подкислении и пропадало при подщелачивании. Для того чтобы выделить лейкоциты из гноя, пропитавшего повязки, ученый пользовался соляной кислотой. Кислота растворяла белок лейкоцитов. Рассматривая оставшееся под микроскопом, Мишер (который был в курсе открытий своих коллег и знал, что клетки неоднородны и в них есть ядра) сделал вывод, что открытое им соединение содержится именно в ядрах клеток. И назвал он его соответствующим образом – нуклеином.
Правда, от этого открытия до появления собственно термина ДНК прошло почти сто лет. Сам Мишер так и не смог до конца расшифровать тайну нуклеина. Хотя он был очень близок к истине – предположил, что нуклеин каким-то образом участвует в передаче размножения, отвечая за передачу наследственных признаков. Сделать такое заключение ему позволила серия опытов над лососем – для дальнейшего изучения нуклеина ученый выбрал клетки молоки лососевых рыб. Но затем ученый сам себя загнал в тупик. Путем множественных экспериментов – воздействуя на нуклеин всеми известными химическими соединениями, он определил его состав – углерод, кислород, водород, азот и фосфор – и решил, что это слишком простая формула для того, чтобы передавать все разнообразие наследуемой информации.