Категории
Самые читаемые

Суперсила - Пол Девис

Читать онлайн Суперсила - Пол Девис

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 42 43 44 45 46 47 48 49 50 ... 74
Перейти на страницу:

Однако при всей важности подобных геометрических рассмотрении такие построения остаются не более чем карточным домиком. И этот домик рухнул с наступлением в конце прошлого века эры современной математики, ознаменовавшейся развитием могущественного раздела математики —теории множеств. Одно из сильнейших потрясений, испытанных математиками, было связано с открытием Георга Кантора. Оно заключалось в том, что линия насчитывает столько же точек, сколько и поверхность. Интуитивное представление, что на поверхности в бесконечное число раз больше точек, чем в проведенной на ней линии, было полностью опровергнуто. Это утверждение было встречено скептически весьма уважаемыми математиками. Некоторые отвергали открытие Кантора, объявив его безумным. Шарль Эрмит писал: “Чтение писаний Кантора напоминает настоящую пытку... Отображение линии на поверхности совершенно неубедительно... подобный произвол... Автору следовало бы подождать с этим...” – и далее в том же духе.

Лишь на рубеже нынешнего столетия справедливость восторжествовала и удалось дать удовлетворительное определение размерности. Благодаря важным работам Л. Е. Дж. Брауэра, Рене Лебега и других была в конце концов найдена надежная процедура сравнения двух пространств с целью сопоставления их размерностей. Соответствующие методы и доказательства основаны на тонких абстрактных понятиях теории множеств, весьма далеких от наших интуитивных представлений. Лишь подобная тщательность и внимание к деталям позволили закрепить формальные основы нашей науки и нашего повседневного опыта.

Рис. 26. Длину диагонали прямоугольного параллелепипеда можно выразить через длины его ребер а, Ь и с, просто обобщив теорему Пифагора. Нетрудно перенести это обобщение и на случай четырех или большего числа измерений пространства.

Почему три?

Какова бы ни была действительная размерность пространства, несомненно, что нашему восприятию непосредственно доступны лишь три измерения. Многие ученые задавались вопросом, можно ли объяснить, почему природа “выбрала” именно число три и является ли это число в определенном смысле выделенным.

В 1917 г. физик Пауль Эренфест написал статью под названием “Каким образом в фундаментальных законах физики отражается тот факт, что пространство трехмерно?”. Эренфест обратил внимание на факт существования устойчивых орбит —типа тех, по каким планеты движутся вокруг Солнца или электроны вокруг атомного ядра. В физике широко распространен закон “обратных квадратов”, описывающий характер изменения различных сил с расстоянием. В гл. 5 мы узнали, что этому закону следуют гравитационные, электрические и магнитные силы. Еще в 1747 г. Иммануил Кант осознал глубокую связь между этим законом и трехмерностью пространства. Уравнения, описывающие гравитационное или электрическое поле точечного источника, можно легко обобщить на случай пространства с другим числом измерений и найти их решения для этого случая. Из этих решений видно, что в пространстве с n измерениями мы приходим к закону обратной степени n 1. В частности, в трехмерном пространстве n1=2 и справедлив закон “обратных квадратов”; в четырехмерном пространстве n1=3 (закон “обратных кубов”) и т.д. Нетрудно показать, что если бы гравитационное поле Солнца действовало на планеты, например, по закону “обратных кубов”, то планеты, двигаясь по спиральным траекториям, довольно быстро упали бы на Солнце и оно поглотило бы их.

Аналогичная картина наблюдается и в мире атомов. Оказывается, что, даже если принять во внимание квантовые эффекты, у электронов не будет устойчивых орбит в пространстве с числом измерений больше трех. А без устойчивых атомных орбит не было бы химических процессов, а следовательно, и жизни.

От размерности пространства существенно зависит еще одно явление – распространение волн. Нетрудно показать, что в пространствах с четным числом измерений не могут распространяться “чистые” волны. За волной обязательно возникают возмущения, которые вызывают реверберацию. Именно поэтому четко сформированные сигналы нельзя передавать по двумерной поверхности (например, по резиновому покрытию). Анализируя этот вопрос, математик Г. Дж. Уитроу в 1955 г. пришел к выводу, что высшие формы жизни были бы невозможны в пространствах чётной размерности, поскольку живым организмам для согласованных действий необходимы эффективная передача и 'обработка информации.

Эти исследования отнюдь не доказывают невозможность другого числа измерений пространства; они лишь говорят о том, что в мире с числом измерений, отличным от трех, физика была бы совершенно другой и, возможно, такой мир был бы значительно менее упорядочен по сравнению с тем, который мы реально воспринимаем.

Как совместить все это с теорией Калуцы, в которой вселенная имеет четыре пространственных измерения? Одна возможность состоит в том, чтобы рассматривать дополнительное, невидимое измерение исключительно как формальный математический прием, не имеющий физического смысла. Однако более привлекательная идея была высказана вскоре после публикации Калуцей первоначального варианта теории.

Теория Калуцы – Клейна

В 1926 г. шведский физик Оскар Клейн предложил блестящий по простоте ответ на вопрос о том, куда же исчезло пятое измерение Калуцы. Клейн предположил, что мы не замечаем дополнительного измерения потому, что оно в некотором смысле “свернулось” до очень малых размеров. Поясним это на примере шланга для полива. Издали он выглядит просто как извилистая линия. При близком рассмотрении то, что мы принимали за точку на линии, оказывается окружностью (рис. 27). Клейн предположил, что Вселенная устроена'аналогичным образом. То, что мы обычно Считаем точкой в трехмерном пространстве, в действительности является крохотной окружностью в четвертом пространственном измерении. Из каждой точки пространства в направлении ни вверх, ни вниз, ни вбок, ни куда-либо еще в воспринимаемом нами пространстве выходит небольшая “петелька”. Мы не замечаем всех этих “петель” вследствие крайней малости их размеров. Чтобы свыкнуться с идеей Клейна, требуется время. Вопервых, мы не можем представить себе, где же свертываются эти петли? Ведь они находятся не а пространстве, а расширяют его, Подобно тому, как кривая, многократно описывая петлю за петлей, вырисовывает трубку. Мы без труда представляем себе это в двух измерениях, но не в четырех. Однако предположение Клейна все-таки сохраняет смысл. При этом не возникает проблемы ни с устойчивостью орбит, ни с распространенней волн. Дело в том, что ни вещество, ни поля (в виде волн) не могут неограниченно перемещаться в дополнительном измерении. Наличие пятого измерения допустимо, однако ничто не может ускользнуть из него сколь-нибудь далеко. Тем самым теория Калуцы – Клейна, увы, не оставляет никаких надежд фантастам использовать ее для сокращения пути в пространстве.

Рис. 27. С большого расстояния трубка кажется волнистой линией. При ближайшем рассмотрении точка Р на этой линии оказывается окружностью поверхности трубки. Возможно, что объект, обычно воспринимаемый нами как точка в трехмерном пространстве, в действительности представляет собой крошечную окружность в других измерениях пространства. Эта идея лежит в основе теории Ка-луцы—Клейна, объединяющей электромагнитное и гравитационное взаимодействия.

Клейн вычислил периметр петель вокруг пятого измерения, используя известное значение элементарного электрического заряда электрона и других частиц, а также величину гравитационного взаимодействия между частицами. Он оказался равным 10^-32 см, т.е. в 10^20 раз меньше размера атомного ядра. Поэтому неудивительно, что мы не замечаем пятого измерения: оно скручено в масштабах, которые значительно меньше размеров любой из известных нам структур, даже в физике субъядерных частиц. Очевидно, в таком случае не возникает вопроса о движении, скажем, атома в пятом измерении. Скорее это измерение следует представлять себе как нечто находящееся внутри атома.

Несмотря на ее неординарность теория Калуцы – Клейна на протяжении более полувека оставалась по существу не более чем математическим курьезом. С открытием в 30-е годы нашего столетия слабых и сильных взаимодействий идеи объединения гравитации и электромагнетизма в значительной мере потеряли свою привлекательность. Последовательная единая теория поля должна была включить в себя уже не две, а четыре силы. Очевидно, это нельзя было сделать, не достигнув глубокого понимания слабых и сильных взаимодействий. В конце 70-х годов благодаря свежему ветру, принесенному теориями Великого объединения (ТВО) и супергравитацией, вспомнили старую теорию Калуцы – Клейна. С нее стряхнули нафталин, сдули пыль, приодели по моде и включили в нее все известные на сегодня взаимодействия.

1 ... 42 43 44 45 46 47 48 49 50 ... 74
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Суперсила - Пол Девис.
Комментарии