Магия математики: Как найти x и зачем это нужно - Артур Бенджамин
Шрифт:
Интервал:
Закладка:
Как вы, наверняка, помните, проведенная через нее касательная должна иметь наклон 0. Так как y' = 2x – 8, уравнение 2x – 8 = 0 приведет нас к минимуму при x = 4 (кстати, y = 16 – 32 + 10 = –6). Для y = f(x) значение x, удовлетворяющее f'(x) = 0, называется критической точкой функции f. Функция y = x² – 8x + 10, например, имеет только одну критическую точку – x = 4.
Где же максимум? В нашем примере его попросту нет: значение y-координаты для x² – 8x + 10 может быть сколь угодно большим. Ограничить его можно одним единственным способом – определив для x пределы значений. Возьмем для примера 0 ≤ x ≤ 6. Тогда при x = 0 y будет равен 10, а при x = 6 – −2, то есть критической точкой для этой функции является x = 0. Обобщение этого приводит нас к одной очень важной теореме.
Теорема (теорема об экстремуме функции в точке): Если дифференцируемая на отрезке функция y = f(x) принимает максимальное или минимальное значение в точке x*, то x* должна быть либо критической точкой f, либо граничной точкой отрезка.
Давайте на секунду вернемся в начало главы, к задаче с лотком. Нам нужно, по сути, максимизировать функцию
y = (12 – 2x)²x = 4x³ – 48x² + 144xгде x должен находиться в диапазоне от 0 до 6. Нам нужно найти такой x, при котором значение y будет наибольшим. Так как наша функция представляет собой многочлен, ее производную можно найти как
y' = 12x² – 96x + 144 = 12(x² – 8x + 12) = 12(x – 2)(x – 6)Следовательно, ее критическими точками будут x = 2 и x = 6.
А так как мы знаем, что при объеме, равном 0, и конечных точках, равных 0 и 6, объем будет минимальным, нам остается только одна критическая точка – x = 2. Именно она и даст нам максимум – y = 128 см³.
Правила дифференцирования
Чем больше функций мы продифференцируем, тем больше задач сможем решить. Пожалуй, самой важной функцией в исчислении является показательная функция y = ex. Ее особенность в том, что она равна собственной производной.
Теорема: Если y = ex, то y' = ex.
ОтступлениеПочему f(x) = ex соответствует f'(x) = ex? Смотрите, в чем секрет. Сначала обратите внимание на то, что
Вспомним, что е, по сути, есть
что означает, что с увеличением n значение члена (1 + 1/n)n будет все ближе и ближе подходить к e. Теперь предположим, что h = 1/n. При очень большом значении n h = 1/n находится очень близко к 0. Следовательно, при h, близком к 0,
e ≈ (1 + h)1/hВозведя обе части в степень h (и помня, что (ab)c = abc), получаем
А есть ли еще такие функции, которые равны своим производным? Есть. Но все они сводятся к y = cex, где c заменяется любым действительным числом (в том числе и 0, который превращает функцию в постоянную y = 0).
Не так давно мы выяснили, что при сложении функций производная суммы равна сумме производных. А что насчет умножения? Увы, но производная произведения не равна произведению производных. Тем не менее посчитать ее не очень сложно – для этого достаточно воспользоваться несложной теоремой.
Теорема (правило дифференцирования произведения функций): Если y = f(x)g(x), то
y' = f(x)g'(x) + f'(x)g(x)Например, согласно правилу дифференцирования произведения, чтобы продифференцировать y = x3ex, нам нужно взять f(x) = x³ и g(x) = ex. В результате у нас получится
y' = f(x)g'(x) + f'(x)g(x) = x3ex + 3x2exОбратите внимание, что при f(x) = x3 и g(x) = x5 их произведение, согласно тому же правилу, составит x3x5 = x8. Производная же будет выглядеть как
y' = x3(5x4) + 3x2(x5) = 5x7 + 3x7 = 8x7что полностью соответствует правилу дифференцирования степенной функции.
ОтступлениеДоказательство (правило дифференцирования произведения функций): Предположим, что u(x) = f(x)g(x). Тогда
А дальше творим истинно математическое волшебство – добавляем к числителю 0, но не привычным способом, а с помощью прибавления и вычитания f(x + h)g(x):
Так как h → 0, в результате имеем f(x)g'(x) + f'(x)g(x), что и требовалось доказать.◻
Но доказанное правило полезно не только в этом конкретном случае – с его помощью можно найти производные других функций. Мы уже доказали, что правило дифференцирования степенной функции верно при положительных значениях показателя степени. Давайте посмотрим, как оно поведет себя при дробных и отрицательных значениях.
Например, согласно правилу дифференцирования степенной функции
Сможем ли мы доказать его с помощью правила дифференцирования произведения? Предположим u(x) = √x. Тогда
u(x) u(x) = √x √x = xПродифференцировав обе стороны и применив правило дифференцирования произведения, получаем
u(x) u'(x) + u'(x) u(x) = 1Следовательно, как мы и предполагали.
ОтступлениеПравило дифференцирования произведения при отрицательных значениях степени гласит, что y = x−n будет иметь производную Чтобы это доказать, возьмем u(x) = x−n, где n ≥ 1. Согласно определению, при x ≠ 0
u(x)xn = x–nxn = x0 = 1Продифференцировав обе стороны и применив правило дифференцирования произведения, получаем
u(x)(nxn−1) + u'(x)xn = 0Разделив всех члены уравнения на xn и перенеся первый член в другую часть уравнения, получаем