Магия математики: Как найти x и зачем это нужно - Артур Бенджамин
Шрифт:
Интервал:
Закладка:
Чтобы отследить общую закономерность, заменим ставку 0,06 ставкой r, а начальную сумму $10 000 суммой $P. Тогда через t лет вы смогли бы получить
$P(1 + r)tТеперь предположим, что проценты начисляются дважды в год: по 3 % каждые 6 месяцев. Через год на вашем счете будет лежать $10 000(1,03)² = $10 609 – немного больше, чем в прошлом случае.
С ежеквартальными (раз в три месяца) начислениями вы заработаете 4 раза по 1,5 %, то есть $10 000(1,015)4 = $10 613,63.
Давайте обобщим и это: при начислении процента n раз в год через 365 дней сумма ваших накоплений составит
При очень больших значениях n мы будем иметь дело с непрерывными начислениями процента. Согласно второму замечательному пределу, за год получится
Сведем все это в таблицу:
Иными словами, начав с $P, с непрерывными начислениями по ставке r через t лет вы получите $A. Все это выражается очень симпатичной во всех отношениях формулой
A = PertКак хорошо видно на графике, функция y = ex растет очень быстро. По соседству с ней мы изобразим графики e2x и e0,06x. Правда, похожи? Подобный рост называется ростом по экспоненте. Если же взять график y = e–x, то он очень быстро приближается к 0, то есть демонстрирует спад по экспоненте.
А что насчет графика 5x? Так как e < 5 < e², он должен лежать между ex и e2x. Если точнее, то e1,609… = 5, следовательно, 5x ≈ e1,609x. В целом же любую функцию ax можно представить в виде ekx, где k есть экспонента, соответствующая a = ek. А для того, чтобы найти k, нам понадобятся логарифмы.
Точно так же, как квадратный корень является обратным представлением квадратичной функции (то есть находится с ней во «взаимоотменяющих» отношениях), логарифм является обратным представлением показательной (экспоненциальной) функции. Наиболее часто используемый логарифм – десятичный (то есть по основанию 10), обозначаемый как lg x. Считается, что
y = lg x если 10y = xиз чего следует
10lg x = xНапример, так как 10² = 100, lg 100 будет равен 2. Вот очень полезная таблица логарифмов:
Одной из причин популярности логарифмов является их уникальная способность преобразовывать огромные значения в малые, куда более удобоваримые для человеческого ума. Логарифмы, в частности, используются при измерении и подсчете магнитуды землетрясения по шкале от 1 до 10 (да-да, это я о знаменитой шкале Рихтера), громкости звука (в децибелах), кислотности химических растворов (pH) и даже рейтинга посещаемости интернет-страниц (в алгоритме PageRank, придуманном корпорацией Google).
Что собой представляет lg 512? Любой профессиональный калькулятор (равно как и большинство поисковых систем в Интернете) скажет вам, что log 512 = 2,709…. Вполне похоже на правду: 512 находится между 10² и 10³, а значит, его логарифм должен быть больше 2, но меньше 3.
Логарифмы были изобретены для того, чтобы преобразовывать умножение в более простое сложение. Основано это на одной любопытной теореме.
Теорема: Для любых положительных значений x и y
log xy = log x + log yДругими словами, логарифм произведения равен сумме логарифмов.
Доказательство: Согласно правилам действий со степенями,
10lg x + lg y = 10lg x 10lg y = xy = 10lg xyСледовательно, возведение 10 в степень lg x + lg y дает xy, что и требовалось доказать.◻
Не менее полезно следующее правило.
Теорема: Для любого положительного значения x и любого целого значения n
log xn = n log xДоказательство: Согласно правилам действий со степенями, abc = (ab)c. Следовательно,
10n lg x = (10lg x)n = xnто есть логарифм xn равен n lg x.◻
Десятичный логарифм – штука вполне себе обычная, насколько вообще обычным может быть нечто столь активно использующееся в таких важных областях науки, как химия, физика или геология (справедливости ради все же следует упомянуть, что в информатике и дискретной математике предпочтение отдается логарифму с основанием 2). В целом же для любого значения b > 0 логарифм по основанию b logb определяется согласно следующему правилу
y = logb x если by = xТак, log2 32 = 5, потому что 25 = 32. А все уже рассмотренные нами свойства логарифмов соответствуют любому значению b. Так, например,
blogb x = xlogb xy = logb x + logb ylogb xn = n logb xВ большинстве разделов математики, физики и техники самым полезным считается логарифм по основанию b = e. Он называется натуральным и даже имеет свое специальное обозначение – ln x. То есть
y = ln x если ey = xИли же, для всех действительных значений x,
ln ex = xВаш калькулятор, например, может за долю секунды подсчитать, что ln 5 = 1,609…, однако это нам уже хорошо известно по тому, что e1,609 ≈ 5. Подробнее же о функциях натурального логарифма мы поговорим в главе 11.
ОтступлениеБольшинство профессиональных калькуляторов способно считать как натуральные, так и десятичные логарифмы. И лишь очень немногие ориентированы на другие значения b. Впрочем, проблемы тут никакой нет: одно основание довольно легко преобразовать в другое. Да-да, один логарифм является ключом ко всем остальным! На этот счет даже есть своя теорема, благодаря которой мы можем, например, взять логарифм по основанию 10 и найти его аналог по основанию b.
Теорема: Для любых положительных значений b и x
Доказательство: Предположим, что y = logb x. Тогда by = x. Прологарифмируем обе части: log by = log x. Согласно второму замечательному пределу, y log b = log x. Следовательно, y = (log x)/(log b), что и требовалось доказать.◻
ln x = (log x) / (log e) = (log x) / (0,434…) ≈ 2,30 log xlogb x = (log x) / (log 2) = (log x) / (0,301…) ≈ 3,32 log x
Другие лики е
Как и число π, число e широко используется в математике. И, как и π, оно встречается подчас там, где вы совершенно не ожидаете его увидеть. Например, колоколообразная кривая, которую мы уже упоминали в главе 8, имеет формулу