Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Математика » Математика. Утрата определенности. - Морис Клайн

Математика. Утрата определенности. - Морис Клайн

Читать онлайн Математика. Утрата определенности. - Морис Клайн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 53 54 55 56 57 58 59 60 61 ... 140
Перейти на страницу:

В начале XIX в. «логический туман» окутывал не только алгебру, но и анализ. Предложенное Лагранжем обоснование математического анализа (гл. VI) удовлетворяло не всех математиков, и некоторые из них вновь встали на позицию Беркли и других критиков, считавших, что благополучие в этой области обеспечивается лишь за счет того, что ошибки взаимно компенсируются. Такого же мнения придерживался и Лазар Карно в своих «Размышлениях о метафизике исчисления бесконечно малых»: его метафизика «объясняла», что одни ошибки компенсируют другие. После длительного обсуждения различных подходов к математическому анализу Карно приходит к выводу, что, хотя все эти методы, равно как и введенное Д'Аламбером понятие предела, в действительности эквивалентны греческому методу исчерпывания, бесконечно малые позволяют быстрее получать результат. Карно внес свою лепту в разъяснение и уточнение понятий анализа, но вклад его не был особенно велик. Кроме того, сопоставляя идеи Ньютона, Лейбница и Д'Аламбера с греческим методом исчерпывания, он сделал явно рискованный шаг: ведь в греческой геометрии и алгебре не существовало общего понятия производной.

Грубые ошибки в области математического анализа были, увы, нередки у математиков XIX в. Можно было бы привести немало примеров этого, но мы ограничимся одной-двумя иллюстрациями. В основе всего математического анализа лежат понятия непрерывной функции и производной от функции. Чисто интуитивно, непрерывная функция — это такая кривая, которую можно начертить одним росчерком пера, не отрывая его от бумаги (рис. 7.1). Геометрический смысл производной к такой функции — тангенс угла наклона касательной, проведенной к кривой в точке P. Казалось бы, очевидно, что непрерывная функция должна иметь касательную в каждой точке. Однако некоторые математики XIX в. сумели подняться над интуитивными представлениями и вознамерились доказать все, что возможно, чисто логическим путем.

Рис. 7.1. График непрерывной функции.

К сожалению, непрерывная функция с точками излома не имеет в них производной (функция, изображенная на рис. 7.2, не имеет производной в точках излома A, B и C).

Рис. 7.2. Непрерывная, но не дифференцируемая (в точках A, B и C) функция.

Тем не менее Андре Мари Ампер (1775-1836) «доказал» в 1806 г., что любая функция имеет производную во всех точках, где она непрерывна. Другие или аналогичные «доказательства» этого были приведены Лакруа в его знаменитом трехтомном «Трактате по дифференциальному и интегральному исчислению» (2-е изд. — 1810-1819) и почти во всех основных учебниках математического анализа XIX в. Жозеф Луи Франсуа Бертран (1822-1900) «доказал» в 1875 г. дифференцируемость непрерывной функции! Разумеется, все эти «доказательства» были ошибочными. Заблуждение некоторых авторов «доказательств» дифференцируемости было вполне простительным, если учесть, что в течение долгого времени не было точно определено само понятие функции, но примерно к 30-м годам прошлого века этот пробел был наконец восполнен.{82}

Если вспомнить, что непрерывность и дифференцируемость два основных понятия математического анализа и что основной областью математики с середины XVII в. и, пожалуй, вплоть до настоящего времени являлся именно математический анализ, то нельзя не ужаснуться неясности и неопределенности этих фундаментальных понятий. Ошибки в рассуждениях и даже ошибочные заключения в вопросах, связанных с непрерывностью и дифференцируемостью, зачастую были столь значительны, что сегодня они считались бы непростительными даже для студентов младших курсов, — а ведь их совершали знаменитейшие математики: Фурье, Коши, Галуа, Лежандр, Гаусс, а также другие ведущие математики того времени, хотя и более низкого ранга.

Принятые в XIX в. учебники математического анализа по-прежнему свободно оперировали такими терминами, как дифференциал или бесконечно малая величина, которые все еще оставались неясными или противоречивыми: они вроде бы одновременно и равнялись нулю, и были отличны от нуля. Это не могло не озадачивать тех, кто только начинал изучать математический анализ. Единственно, что им оставалось делать, — это следовать совету Д'Аламбера: «Будьте настойчивы, и вера к вам придет». Бертран Рассел, учившийся в 1890-1894 гг. в Тринити-колледже Кембриджского университета, вспоминал в своей автобиографической книге «Мое философское развитие»: «Те, кто преподавал мне дифференциальное исчисление, не знали правильных доказательств основных теорем и пытались заставить меня принять официальную софистику как акт веры».

Логические трудности, вставшие перед математиками XVII-XIX вв., достигли наибольшей остроты в таких разделах математического анализа, как дифференциальное и интегральное исчисление, а также теория бесконечных рядов и дифференциальных уравнений. Но в начале XIX в. излюбленной областью исследования математиков вновь стала геометрия. Евклидова геометрия расширилась. Новую область геометрии, так называемую проективную геометрию (занимавшуюся изучением тех свойств фигуры, которые сохраняются при ее проектировании, подобном, скажем, проектированию реальной трехмерной сцены на кинопленку, осуществляемому объективом кинокамеры), впервые подробно рассмотрел Жан Виктор Понселе (1788-1867). Как можно было ожидать, исходя из предшествующей истории математики, Понселе и другие геометры благоговейно относились к многим теоремам, доказывая которые они столкнулись с бесчисленными трудностями. К тому времени, благодаря главным образом работам Декарта и Ферма (XVII в.), уже возникли алгебраические методы доказательства геометрических теорем; однако геометры первой половины XIX в. считали алгебраические методы чуждыми геометрии, геометрической интуиции и всему, что составляет дух «истинно геометрического» исследования.

Чтобы «доказать» свои теоремы чисто геометрическими методами, Понселе широко использовал принцип непрерывности. В своем «Трактате о проективных свойствах фигур» (1822) он сформулировал этот принцип следующим образом: «Если одна фигура получается из другой непрерывным преобразованием и полученная фигура не уступает по общности исходной, то можно сразу же утверждать, что любое свойство первой фигуры будет справедливо и для второй фигуры». Никаких пояснений по поводу того, в каких случаях конечную фигуру можно считать не уступающей по общности исходной фигуре, Понселе не дает.

Для «доказательства» правильности своего принципа Понселе воспользовался теоремой евклидовой геометрии, согласно которой произведения отрезков пересекающихся хорд равны (на рис. 7.3 ab = cd). Понселе заметил, что, когда точка пересечения хорд сдвигается во внешнюю по отношению к окружности область, равными становятся произведения секущих и их внешних отрезков (на рис. 7.4 ab = cd).

Рис. 7.3. Теорема о пересекающихся хордах.

Рис. 7.4. Теорема о секущих, проходящих через одну точку вне окружности.

Никаких доказательств не требовалось, так как принцип непрерывности гарантировал правильность этого заключения. Кроме того, когда одна из секущих вырождается в касательную, она становится равной своему внешнему отрезку, а их произведение продолжает оставаться равным произведению другой секущей на ее внешний отрезок (на рис. 7.5 ab = c2). Этими результатами Понселе воспользовался, чтобы продемонстрировать, как принцип непрерывности приводит к трем хорошо известным теоремам, удовлетворяющим данному принципу и в какой-то мере воплощающим его. Но, разумеется, эти рассуждения не заменяют доказательства принципа непрерывности, а Понселе, предложивший термин «принцип непрерывности», рассматривал его как абсолютную истину и смело применял в своем «Трактате» для «доказательства» многих новых теорем проективной геометрии.

Рис. 7.5. Теорема о секущей и касательной, проведенных к окружности из одной точки

В действительности принцип непрерывности не был «изобретением» Понселе. В широком философском смысле этот принцип восходит к Лейбницу. В гл. VI мы уже рассказывали о том, как Лейбниц использовал математический принцип непрерывности при построении дифференциального и интегрального исчисления. Однако принцип непрерывности не получил достаточно широкого распространения, пока Гаспар Монж (1746-1818), вдохнув в него новую жизнь, не применил этот принцип для доказательства теорем некоторых типов. Монж сначала доказывал общую теорему для особым образом расположенной фигуры, а затем утверждал, что теорема верна и в общем случае, хотя при переходе к общему положению некоторые элементы фигуры становились мнимыми. Так, для доказательства теоремы о кривой и прямой Монж сначала рассмотрел бы случай, когда кривая и прямая пересекаются, а затем стал бы утверждать, что доказанная теорема остается верной и в том случае, когда кривая и прямая не пересекаются, т.е., когда их точки пересечения становятся мнимыми.

1 ... 53 54 55 56 57 58 59 60 61 ... 140
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Математика. Утрата определенности. - Морис Клайн.
Комментарии