Основы физиологии сердца - Лариса Шалковская
Шрифт:
Интервал:
Закладка:
Классические представления А. Ходжкина и Б. Катца о свойствах ионных каналов клеток возбудимых тканей, в том числе и миокарда, получили дальнейшее развитие в 1970– 1980-е гг. благодаря разработке методики точечной фиксации мембранного потенциала и регистрации тока через одиночные ионные каналы (patch clamp). Эта методика была впервые предложена Э. Неером и Б. Сакманом в 1976 г. и оказала огромное влияние на развитие клеточной электрофизиологии. (В 1991 г. указанные авторы получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся функций одиночных ионных каналов в клетках».) Ими было установлено, что активация (открытие) и закрытие ионных каналов представляют собой вероятностный процесс, поскольку у каждого канала имеется свой порог открытия. Некоторые ионные каналы могут проводить токи как внутрь клетки, так и из нее, то есть в различных направлениях.
В кардиомиоцитах были обнаружены несколько подтипов калиевых и натриевых каналов, различные виды каналов для ионов кальция и хлора. Приводим краткую характеристику основных типов ионных каналов миокардиальных клеток.
I. Каналы для ионов К+:
а) Потенциалзависимые:
1. Каналы входящего прямого К+ тока (англ. inward rectifier – входящие выпрямляющие), IK+1, способны проводить ионы калия внутрь клетки при изменении потенциала мембраны. Однако в основном эти каналы обеспечивают выходящий ток, то есть движение ионов калия из клетки, в результате чего возникает мембранный потенциал покоя. Блокируются ионами бария Ba2+ и цезия Cs+.
2. Быстро инактивируемые каналы выходящего K+-тока (англ. transient outward – быстро выводящие), Ito. Эти каналы по скорости прохождения через них ионов калия разделяются на два подвида: быстрые (англ. fast), Ito, f, и медленные (англ. slow), Ito, s.
3. Каналы задержанного выходящего тока (англ. delayed rectifier – задержанные выпрямляющие), IK+. В современной электрофизиологической литературе эти каналы разделяют на три подвида: медленно активируемые (IKS), быстро активируемые (IKR) и сверхбыстро активируемые (IKUR).
4. Кальций-регулируемые калиевые каналы, IK+, Ca2+ .
б) Лиганд-активируемые калиевые каналы выходящего тока:
1. Ацетилхолин-зависимые, IK+, Ach.
2. АТФ-активируемые, IK+, ATP.
II. Каналы для ионов Nа+ – потенциалзависимые. Эти каналы по скорости прохождения через них ионов натрия в клетку разделяются на два подвида:
1. Быстрые, блокируемые тетродотоксином, открытие которых формирует входящий ток INa+.
2. Гиперполяризационно-активируемые смешанные Na+/ K+-каналы, открытие которых формирует входящий ток If (от англ. funny – смешной, забавный). Обнаружены в основном в пейсмекерных клетках синусового узла. Особенностью этих каналов является их способность к проведению ионов как натрия, так и калия при гиперполяризации мембраны.
III. Каналы для ионов Са2+ (входящего Са2+-тока) – потенциалзависимые:
1. Т-тип (англ. transient – изменчивые, быстро инактивируемые), ICaT, открываются при величине мембранного потенциала –80… –60 мВ и блокируются ионами Mg2+. Эти каналы обнаружены, в частности, в пейсмекерных клетках синусового и атриовентрикулярного узлов, активируются во время диастолической деполяризации.
2. L-тип (англ. long lasting – долгодействующие), медленно инактивируемые, ICaL, открываются при величине мембранного потенциала –60… –40 мВ и блокируются верапамилом. Эти каналы проницаемы в основном для ионов Са2+ и лишь в минимальной степени Na+ (в соотношении примерно 1000: 1). Обнаружены в клетках рабочего миокарда, а также пейсмекерных клетках, обеспечивают входящий ток кальция во время потенциала действия. Ток через эти каналы усиливается в присутствии агонистов β-адренорецепторов, например адреналина.
3. Поддерживающие каналы входящего Ca2+-тока (англ. sustained inward current – поддерживающий входящий ток), Ist, сходные по свойствам с каналами L-типа. Эти каналы также обнаружены в пейсмекерных клетках синусового и атриовентрикулярного узлов, активируются во время диастолической деполяризации, блокируются антагонистом кальция никардипином.
4. DHPR-типа – дигидропиридиновые, блокируются дигидропиридинами, обнаружены в Т-трубочках мембран рабочих кардиомиоцитов, активируются во время фазы плато потенциала действия, обеспечивая усиление входа кальция. 5. RyaR-типа (рианодиновые), модулируются растительным алкалоидом рианодином, обнаружены в мембранах цистерн саркоплазматического ретикулума (СПР) рабочих кардиомиоцитов, обеспечивают выход кальция из СПР в цитоплазму при электромеханическом сопряжении.
IV. Каналы для ионов Сl:
– неспецифические хлорные каналы ICl;
– кальций-активируемые хлорные каналы ICa2+,Cl.
V. Неспецифические ионные каналы (англ. background), Ibg, могут проводить различные виды положительно заряженных ионов (К+, Na+) внутрь клетки при изменениях мембранного потенциала в лабораторных условиях.
VI. Механически активируемые (англ. stretch-activated) каналы смешанного Ca2+/Na+-тока активируются, например, в ответ на растяжение волокон миокарда.
Наиболее изученными являются натриевые каналы, которые широко представлены во всех возбудимых тканях, включая миокард. Исследованиями установлено, что каждый натриевый канал может находиться в трех состояниях: активированном, или открытом (О), и двух закрытых: инактивированном (И) и реактивированном (Р). Реактивированный канал в ответ на электрический стимул может перейти в открытое состояние, тогда как инактивированный – нет. Инактивированное состояние каналов отмечено при положительных значениях мембранного потенциала +20… +30 мВ, а реактивация возможна лишь при отрицательном значении мембранного потенциала, около –60 мВ. При более выраженной гиперполяризации мембраны (до –75… –80 мВ) вероятность открытия натриевого канала резко возрастает. Открытие и закрытие ионных каналов, обеспечивая движение трансмембранных ионных токов, формирует сдвиги мембранного потенциала кардиомиоцитов. Кроме того, эти процессы имеют значение в изменениях возбудимости и формировании рефрактерности миокарда.
Мембранные потенциалы клеток – водителей ритма в течение диастолы нестабильны, поскольку наблюдается самопроизвольное отклонение мембранного потенциала от максимального отрицательного уровня в сторону деполяризации – так называемая спонтанная (медленная) диастолическая деполяризация. Поэтому для этих клеток термин «потенциал покоя» не применяется, а максимальное отрицательное значение мембранного потенциала (примерно –65… – 50 мВ) называется максимальным диастолическим потенциалом. В сократительных кардиомиоцитах во время диастолы мембранный потенциал практически стабилен, и поэтому называется мембранным потенциалом покоя. Его происхождение в указанных клетках принципиально не отличается от генеза потенциала покоя в любых клетках как возбудимых, так и невозбудимых тканей, например эритроцитах. Напомним кратко ионные механизмы происхождения мембранного потенциала покоя.
Концентрация ионов калия внутри клетки (140 ммоль/л) многократно превышает содержание калия вне ее (5 ммоль/л). Кроме того, внутри клетки имеются отрицательно заряженные органические и в меньшем количестве неорганические анионы, которые уравновешивают заряд положительных ионов калия. Однако в покое проницаемость мембраны для ионов K+ больше, чем для отрицательно заряженных органических анионов, которые практически не могут выйти из клетки. Ионы же калия стремятся (по градиенту концентрации) выйти из клетки, и поэтому по мере их выхода на мембране возникает заряд – отрицательный по отношению к наружной поверхности клетки. При этом определенный момент времени осмотическая сила, способствующая выходу ионов калия, будет уравновешиваться электростатической силой притяжения разноименных (положительных и отрицательных) ионов. В результате на мембране установится динамическое равновесие между ионами К+, которые выходят из клетки, и теми ионами К+, которые притягиваются отрицательными анионами и частично возвращаются в клетку. Таким образом, возникает так называемый равновесный калиевый потенциал, который может быть рассчитан по уравнению Нернста:
где –59 – коэффициент, отражающий заряд и валентность иона; в числителе дроби – концентрация ионов внутри клетки; в знаменателе – снаружи. Рассчитанная таким образом величина калиевого равновесного потенциала составляет около –85…–90 мВ.