Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Математика » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

Читать онлайн ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 58 59 60 61 62 63 64 65 66 ... 233
Перейти на страницу:

< >

P Q R '

Λ V э ~

[ ]

(прим. символ «э» заменяет символ импликации «superset of»)

 Первое правило нашей системы таково:

ПРАВИЛО ОБЪЕДИНЕНИЯ: Если x и у — теоремы системы, то строчка  — тоже теорема.

Это правило соединяет две теоремы в одну. Оно должно напомнить вам о предыдущем Диалоге.

Правильно сформированные строчки

У нас будет еще несколько правил вывода; вскоре я их объясню. Однако сначала необходимо определить некое подмножество всех строчек, а именно — правильно сформированные строчки. Они будут определены рекурсивным путем, начиная с атомов. АТОМЫ: P, Q, и R называются атомами. Новые атомы получаются путем добавления штрихов справа от старых атомов, таким образом, получаются R', Q'', R''' и т. д. Это дает нам бесконечные ресурсы атомов. Все атомы правильно сформированы.

Далее, у нас имеются четыре рекурсивных правила.

ПРАВИЛА ОБРАЗОВАНИЯ: Если x и у правильно сформированы, то следующие четыре строчки также правильно сформированы.

(1) ~x

(2)

(3)

(4)

Например, все следующие строчки правильны:

P атом

~P по правилу (1)

~~P по правилу (1)

Q' атом

~Q' по правилу (1)

по правилу (1)

V>

(8) Λ

(Ответ. Те строчки, номера которых являются числами Фибоначчи, сформированы неправильно; остальные — правильно.)

Еще правила вывода

Сейчас мы познакомимся с остальными правилами вывода, при помощи которых строятся теоремы системы. Во всех этих правилах символы «x» и « всегда относятся к правильно сформированным строчкам.

ПРАВИЛО РАЗДЕЛЕНИЯ: Если  — теорема, то и x и у — также теоремы.

Вероятно, вы уже догадались, что значит символ «Λ». (Подсказка: это то самое слово, что причинило столько проблем в Диалоге.) Из следующего правила вы сможете вывести значение тильды («~»):

ПРАВИЛО ДВОЙНОЙ ТИЛЬДЫ: Строчка «~~» может быть выброшена из любой теоремы. Она также может быть вставлена в любую теорему, если при этом получается правильно сформированная строчка.

Правило фантазии

Эта система отличается тем, что в ней нет аксиом — одни лишь правила. Вспомнив наши предыдущие формальные системы, вы можете спросить: как же здесь могут вообще существовать теоремы? Откуда они появляются? Ответом является правило, фабрикующее теоремы «из воздуха» — оно не требует ввода «старых теорем». (Остальные правила, наоборот, нуждаются во вводных данных.) Это правило называется «правилом фантазии.» Почему я его так окрестил? Ответ прост.

Чтобы использовать это правило, вы должны записать любую приглянувшуюся вам правильно сформированную строчку x, и затем спросить себя: что бы произошло, если строчка x действительно оказалась бы аксиомой или теоремой? После чего вы предлагаете системе ответить на этот вопрос; это значит, что вы начинаете вывод, используя x как первую строчку. Пусть у будет последней строчкой. От x до у включительно все является фантазиейxпосылка фантазии, а у — ее результат. Следующий шаг — выход из области фантазии; мы узнали, что

Если бы x являлось теоремой, то у также являлось бы теоремой.

Вы можете спросить: «Где же здесь настоящая теорема?» Это строчка:

Обратите внимание на то, как эта строчка напоминает предложение, напечатанное выше.

Чтобы отметить вход и выход в область фантазии, мы будем использовать квадратные скобки «[» и «]», соответственно. Таким образом, увидев левую квадратную скобку, вы будете знать, что вы «проталкиваетесь» в область фантазии, и следующая строчка будет посылкой. Увидев правую квадратную скобку, вы будете знать, что вы «выталкиваетесь» обратно из воображаемого мира, и что предыдущая строчка была результатом. Удобно (хотя и не необходимо) начинать те строчки вывода, что относятся к области фантазии, с нового абзаца.

Ниже приводится иллюстрация правила фантазии в действии. Строчка P служит посылкой. (На самом деле, P не является теоремой, но для нас это не важно — мы просто задаем вопрос «а что, если бы она была теоремой?») Мы воображаем следующее:

[  проталкивание в область фантазии

  P  посылка

  ~~P  результат (по правилу двойной тильды)

]  выталкивание из области фантазии

Наша фантазия показывает, что:

если бы P было теоремой, ~~P также было бы теоремой.

Теперь мы постараемся «затолкать» это высказывание русского языка (метаязык) в рамки формальной нотации (предметный язык): . Таким образом, наша первая теорема исчисления высказываний должна подсказать вам интерпретацию символа «э».

Вот еще один пример вывода с помощью правила фантазии:

[ проталкивание в область фантазии

  посылка

  P отделение

  Q отделение

  соединение

] выталкивание из области фантазии

правило фантазии

Необходимо помнить, что только последняя строчка здесь является настоящей теоремой; все остальное — чистая фантазия.

Рекурсия и правило фантазии

Как вы могли догадаться из рекурсивной терминологии («проталкивание» и «выталкивание»), правило фантазии может быть использовано рекурсивно — так что могут существовать фантазии внутри фантазий, фантазии, вложенные друг в друга три раза, и так далее. Это означает, что для этого правила существуют различные уровни реальности, так же как и во вставленных друг в друга рассказах или фильмах. Когда вы выталкиваетесь из фильма, вставленного внутрь другого фильма, на мгновение вам кажется, что вы достигли реального мира, хотя вас все еще отделяет от него один уровень. Точно так же, когда вы выталкиваетесь из фантазии внутри фантазии, вы находитесь в «более реальном», чем предыдущий, мире, хотя он и отстоит на один уровень от настоящего.

Предупреждение «НЕ КУРИТЬ», висящее в кинотеатре, не относится к актерам, играющим в фильме: реальный мир не проникает в фантастический мир фильмов. Однако в исчислении высказываний существует не только воздействие реального мира на фантазии, но и фантазий на вложенные в них более глубокие фантазии. Это свойство отражено в следующем правиле:

1 ... 58 59 60 61 62 63 64 65 66 ... 233
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р..
Комментарии