Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Радиотехника » Электроника?.. Нет ничего проще! - Жан-Поль Эймишен

Электроника?.. Нет ничего проще! - Жан-Поль Эймишен

Читать онлайн Электроника?.. Нет ничего проще! - Жан-Поль Эймишен

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 64 65 66 67 68 69 70 71 72 ... 80
Перейти на страницу:

Н. — Но зачем понадобилось спаривать динамомашину с двигателем? Ведь совсем недавно ты объяснил мне, что двигатель постоянного тока и динамомашина одно и то же. Я еще до сих пор не забыл, что во время работы двигатель вспоминает, что он еще и динамомашина, и это проявляется в возникновении противо-э. д. с. Нельзя ли ею воспользоваться?

Л. — Отчасти ты прав, но использовать эту э. д. с. не всегда удобно. В самом деле, напряжение на зажимах двигателя представляет собой сумму э. д. с. и падения напряжения, вызываемого прохождением тока по обмотке якоря, обладающей определенным сопротивлением. Имеются схемы, позволяющие воспользоваться напряжением на зажимах двигателя для получения напряжения, пропорционального частоте, которое затем используется для демпфирования всего устройства. Однако эти схемы отличаются большой сложностью, и я не советую тебе ими увлекаться. Ведь не следует забывать, что наш двигатель подключен к выходу усилителя и что поэтому тебе не так легко будет определить напряжение на его зажимах. А при спаренном с двигателем тахометрическом генераторе ты получишь пропорциональное частоте вращения напряжение на двух не соединенных с корпусом проводах, которое можно очень легко вычесть из разницы потенциалов между движками потенциометров. В случае необходимости ты даже можешь с помощью диодов или аналогичных им приборов ограничить даваемое динамомашиной напряжение. Таким образом, удается ограничить соответствующее скорости торможение, что позволяет при значительной разнице в положении движков потенциометров получить очень высокие частоты вращения системы двигатель — тахометрический генератор.

Н. — Решение в самом деле очень изящное, но воспользоваться им будет довольно трудно, так как все механические элементы системы управления антенной уже смонтированы, и я не знаю, хватит ли мне места уместить тахометрический генератор.

Коррекция с помощью дифференцирующей схемы

Л. — В продаже можно найти небольшие двигатели, которые сами содержат тахометрический генератор. Провода обмоток двигателя и динамомашины намотаны вместе, но электрически изолированы друг от друга; такой двигатель имеет два независимых коллектора и две пары щеток. Однако на тот случай, если ты хочешь как можно меньше переделывать уже существующую установку, можно воспользоваться другим, правда менее совершенным решением, которое, однако, дает не такие уж плохие результаты. Для его осуществления ты должен подать напряжение с движка антенного потенциометра на дифференцирующую схему наподобие изображенной на рис. 64. Так как приложенное к ее входу напряжение пропорционально занимаемому антенной положению, то на выходе дифференцирующей схемы ты получишь напряжение, пропорциональное частоте вращения антенны. Должным образом усиленное выходное напряжение этой схемы вместе с разностью потенциалов между движками потенциометров подается на вход усилителя, что позволит осуществить демпфирование движения системы. Может быть, результаты будут несколько хуже, чем при использовании системы с тахометрическим генератором, но в этом случае можно обойтись наименьшей переделкой уже построенной установки.

Н. — Полагаю, что теперь ты нашел наилучшее для меня решение, и я, несомненно, им воспользуюсь. Мой приятель будет в восторге.

Л. — Я полагаю, что твоя установка его полностью удовлетворит. При хороших потенциометрах можно получить точность ориентации лучше одного градуса, что для антенны более чем достаточно.

Замкнутые системы

Н. — Одно в твоей системе меня весьма интригует. Если воспользоваться твоими определениями, то воздействующий на антенну двигатель следует назвать исполнительным элементом, а антенный потенциометр — преобразователем. Однако в твоей системе исполнительный элемент связан непосредственно с преобразователем, а последний подает свой сигнал на исполнительный элемент через усилитель.

Л. — Ты указал прямо на главную особенность устройств подобного типа. Именно это воздействие исполнительного элемента на преобразователь характеризует сервомеханизмы.

Н. — Так, значит, в сервомеханизмах в качестве преобразователя используются только потенциометры?

Л. — Дело не только в этом. Существует бесчисленное множество и других систем. Сервомеханизмы характеризуют не тип преобразователя, а общность принципа построения схемы, которую я изобразил для тебя на рис. 143.

Рис. 143. Структурная схема системы автоматического регулирования (сервомеханизма), в которой двигатель стремится привести управляемый объект в такое положение, при котором напряжение ошибки было бы равно нулю.

Как ты видишь, здесь рядом с управляющим органом имеется компаратор, который сравнивает положение (или состояние) управляющего органа с положением (или состоянием) объекта регулирования, т. е. органа, которым мы хотим управлять. Компаратор выявляет различие в состоянии этих органов, преобразует его в сигнал погрешности, который подает на усилитель. Выходное напряжение усилителя воздействует на двигатель, который стремится привести объект регулирования в положение, как можно более близкое к положению управляющего органа.

Н. — При всем моем предубеждении к блок-схемам приведенная на рис. 143 схема представляется мне довольно понятной. В системе управления антенной роль управляющего органа выполняет потенциометр, который будет поворачивать рука моего приятеля, а в качестве объекта регулирования выступает антенна (поэтому потенциометр антенны служит преобразователем положения). Разность потенциалов между двумя движками — не что иное, как сигнал погрешности, который мы подаем на усилитель. Однако на структурной схеме, приведенной на рис. 143, ты не изобразил системы демпфирования, о которой ты только что мне рассказывал.

Л. — Они не всегда необходимы, а кроме того, на таких упрощенных структурных схемах их обычно не изображают. А теперь мне хотелось бы, чтобы ты уяснил, что сервомеханизм — весьма общее понятие. Терминам, которыми я пользовался, нужно придать очень широкий смысл. Например, когда я говорю «двигатель», ты должен понимать, что я имею в виду не только обычный электродвигатель, но и все, что может порождать движение, а точнее, все, что может что-то изменять.

Н. — Для большей ясности я предпочел бы получить конкретный пример такого нематериального двигателя.

Пример системы автоматического регулирования

Л. — В этом случае я могу назвать тебе «моноформер». Так называют аппарат, в котором пятно на экране электронно-лучевой трубки можно заставить прийти точно в то место, где расположенная снаружи картонная заслонка или маска наполовину его закрывает. Такой результат можно достичь в аппарате, принцип действия которого в виде схемы изображен на рис. 144. Усилитель получает напряжение от фотоэлемента Ф, а его выходное напряжение, подаваемое на систему вертикального отклонения электронно-лучевой трубки, стремится отклонить луч вниз, если фотоэлемент освещен…

Рис. 144. Пример системы автоматического регулирования. Фотоэлемент Ф получает больше или меньше света с экрана электронно-лучевой трубки в зависимости от того, насколько пятно электронного луча перекрывается расположенной перед экраном картонной заслонкой; фотоэлемент управляет положением электронного луча.

Н. — Понял! Когда электронный луч находится в открытой зоне экрана, он освещает фотоэлемент, что порождает на выходе усилителя соответствующее напряжение. Следовательно, луч будет отклоняться вниз до тех пор, пока создаваемое им пятно не окажется наполовину скрытым заслонкой, потому что если луч опустится ниже, усилитель не даст выходного напряжения и луч будет стремиться вновь подняться вверх.

Л. — Ты совершенно правильно понял. Как ты видишь, в этом случае роль «двигателя» выполняет отклоняющее действие, которое оказывает на электронный луч выходное напряжение усилителя. Управляющим органом служит картонная заслонка, а компаратор здесь не что иное, как оптический закон, гласящий, что свет распространяется по прямой линии, ибо когда пятно на экране электронно-лучевой трубки будет ниже картонной заслонки, фотоэлемент не будет освещен, а когда оно будет выше картонной заслонки, на фотоэлемент попадет свет. Как ты видишь, терминам схемы рис. 143 необходимо придавать очень широкий смысл.

1 ... 64 65 66 67 68 69 70 71 72 ... 80
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Электроника?.. Нет ничего проще! - Жан-Поль Эймишен.
Комментарии