Курс общей астрономии - неизвестен Автор
Шрифт:
Интервал:
Закладка:
§ 61. Определение радиуса Земли. Триангуляция
Согласно теории всемирного тяготения всякое массивное, изолированное тело, вращающееся вокруг оси с определенной скоростью (не очень быстро), должно принять форму, близкую к шару. Действительно, все наблюдаемые массивные небесные тела (Солнце, Луна, планеты) имеют формы, мало отличающиеся от правильных шаров. Шарообразность Земли хорошо видна на ее фотографиях, полученных из космоса (1967-1969 гг.).
Шарообразность Земли позволяет определить ее размеры способом, который был впервые применен еще Эратосфеном в III в. до н. э. Идея этого способа проста. Возьмем на земном шаре две точки O1 и О2 , лежащие на одном географическом меридиане (рис. 38). Обозначим длину дуги меридиана O1O2 (например, в километрах) через l, а ее угловое значение (например, в градусах) - через п°. Тогда длина дуги 1° меридиана l0 будет равна а длина всей окружности меридиана где R - радиус земного шара. Отсюда Угловое значение дуги п° равно разности географических широт точек O1 и О2, т.е. п° = j 1 - j 2 , определение которых представляет простую астрометрическую задачу (см. § 86, 87). Значительно сложнее определить линейное расстояние l между точками O1 и О2. Непосредственное измерение расстояния по кратчайшей линии между этими точками, отстоящими одна от другой на сотни километров, невыполнимо вследствие естественных препятствий - гор, лесов, рек и т.п. Поэтому длина дуги l определяется путем вычислений с помощью специального способа, который требует непосредственного измерения только сравнительно небольшого расстояния - базиса и ряда углов. Этот способ разработан в геодезии и называется триангуляцией. Суть метода триангуляции заключается в следующем. По обе стороны дуги O1О2 (рис. 39), длину которой необходимо определить, выбирается несколько точек А, В, С, ... на расстояниях 30-40 км одна от другой. Точки выбираются так, чтобы из каждой были видны по меньшей мере две другие точки. Во всех точках устанавливаются геодезические сигналы - вышки в форме пирамид - высотой в несколько десятков метров. Наверху сигнала устраивается площадка для наблюдателя и инструмента. Расстояние между какими-нибудь двумя точками, например O1А , выбирается на совершенно ровной поверхности и принимается за базис. Длину базиса очень тщательно измеряют непосредственно с помощью специальных мерных лент. Наиболее точные современные измерения базиса длиной в 10 км производятся с ошибкой ±2 мм. Затем устанавливают угломерный инструмент (теодолит)
последовательно в точках O1, A, В, С, ..., O2 и измеряют все углы треугольников O1АВ, АВС, BCD, ... Зная в треугольнике O1AB все углы и сторону O1A (базис), можно вычислить и две другие его стороны O1B и АВ, я зная сторону АВ и все углы треугольника ABC. можно вычислить стороны АС и ВС и т.д. Иными словами, зная в зтой цепи треугольников только одну сторону (базис) и все углы, можно вычислить длину ломаной линии O1BDO2 (или O1ACEO2 ) . При этих вычислениях учитывается, что треугольники не плоские, а сферические. Далее, определив из точки O1 азимут направления стороны O1В (или O1A), можно спроецировать ломаную линию O1ВDO2 (или O1АСЕO2 ) на меридиан O1O2 , т.е. получить длину дуги O1O2 в линейных мерах.
§ 62. Размеры и форма Земли
Метод триангуляции впервые был применен Снеллиусом в 1615 г. при измерении дуги меридиана в Голландии. С тех пор и до настоящего времени в разных странах, на разных широтах было измерено много дуг на поверхности Земли и не только по меридианам, но и по параллелям. Все эти измерения показали, что длина дуги 1° меридиана не одинакова под разными широтами: около экватора она равна 110,6 км, а около полюсов - 111,7 км, т.е. увеличивается к полюсам. Это означает, что кривизна земной поверхности меньше в полярных областях, чем в экваториальных. Следовательно, Земля отличается от шара и имеет несколько сплющенную форму, близкую к сфероиду (эллипсоиду вращения). На протяжении последних полутора столетий неоднократно определялись элементы земного сфероида, форма которого наилучшим образом согласовывалась с наиболее точными измерениями дуг. Фундаментальные определения были сделаны в СССР Ф.Н. Красовским и А.А. Изотовым в 1940 г. Согласно их исследованиям малая полуось сфероида, совпадающая с осью вращения Земли, равна b = 6356,86 км, а большая полуось, лежащая в плоскости экватора, а = 6378,24 км. Отношение называемое сжатием сфероида, равно . Попытки изобразить поверхность Земли более сложной геометрической фигурой, например, трехосным эллипсоидом, все три оси которого отличаются одна от другой по длине, пока не дали согласующихся между собой результатов. Тем не менее при выводе элементов эллипсоида Красовского экваториальное сжатие Земли было принято равным , что соответствует разности между наибольшим и наименьшим экваториальными радиусами Земли всего лишь в 213 м. При этом долгота наибольшего экваториального радиуса (наибольшего меридиана). равна 15° к востоку. Одной из многочисленных и разнообразных научных задач, решаемых с помощью ИСЗ, является задача исследования формы Земли. Уже в настоящее время с помощью ИСЗ более точно определены некоторые элементы ее фигуры. В результате таких исследований была получена (см., например, Д. Кинг-Хили, Искусственные спутники и научные исследования, ИЛ, 1963) величина экваториального радиуса Земли а = 6375,75 км. Величина северного полярного радиуса оказалась равной 6355,39 км, а южного полярного радиуса - 6355,36 км, т.е. южный полюс Земли находится на 30 м ближе к центру Земли, чем северный. Сжатие Земли оказалось почти таким же, как у эллипсоида Ф.Н.Красовского и А.А.Изотова. На основе многочисленных определений Международный астрономический союз в 1964 г. принял следующие значения элементов земного эллипсоида: а = 6378,16 км, b == 6356,78 км (оба полярных радиуса - одинаковы), e =1 : 298,25, что очень близко к результатам советских исследований. Истинная фигура Земли отличается и от сфероида, и от трехосного эллипсоида и не может быть представлена ни одной из известных математических фигур. Поэтому, говоря о фигуре Земли, имеют в виду нефизическую форму земной поверхности, с океанами и материками, с их возвышенностями и впадинами, а так называемую поверхность геоида. Поверхность, нормалями к которой в любой из ее точек являются отвесные линии, называется уровенной поверхностью, или поверхностью равновесия. Уровенных поверхностей, как внутри Земли, так и охватывающих земную поверхность, или пересекающихся с ней, можно провести бесчисленное множество. Та поверхность равновесия, которая совпадает в открытом океане с поверхностью покоящейся свободной воды, называется геоидом. Поверхность геоида мало отличается от поверхности земного эллипсоида, как правило, поднимаясь над ней внутри материков и опускаясь в океанах (рис. 40). Разность уровней геоида и наиболее близкого к нему по размерам и форме эллипсоида, исключая немногие места на Земле, меньше 100 м.
Изучение истинной фигуры Земли является одной из основных задач геодезии и гравиметрии и состоит из определения элементов эллипсоида, наиболее близкого к геоиду, и положения отдельных частей поверхности геоида относительно эллипсоида.
§ 63. Определение расстояний до небесных тел
Определение расстояний до тел Солнечной системы основано на измерении их горизонтальных параллаксов, рассмотренных в § 31. Зная горизонтальный экваториальный параллакс р0 светила, легко определить его расстояние от центра Земли (см. рис. 20). Действительно, если ТО = R0 есть экваториальный радиус Земли, ТМ = D - расстояние от центра Земли до светила М, а угол р - горизонтальный экваториальный параллакс светила р0 , то из прямоугольного треугольника ТОМ имеем
(3.1)
Для всех светил, кроме Луны, параллаксы очень малы. Поэтому формулу (3.1) можно написать иначе, положив
а именно,
(3.2)
Расстояние D получается в тех же единицах, в которых выражен радиус Земли R0. По формуле (3.2) определяются расстояния до тел Солнечной системы. Быстрое развитие радиотехники дало астрономам возможность определять расстояния до тел Солнечной системы радиолокационными методами. В 1946 г. была произведена радиолокация Луны, а в 1957-1963 гг.- радиолокация Солнца, Меркурия, Венеры, Марса и Юпитера. По скорости распространения радиоволн с = 3 × 105 км/сек и по промежутку времени t (сек) прохождения радиосигнала с Земли до небесного тела и обратно легко вычислить расстояние до небесного тела
Расстояния до звезд определяются по их годичному параллактическому смещению, которое обусловлено перемещением наблюдателя (вместе с Землей) по земной орбите (рис. 41). Угол, под которым со звезды был бы виден средний радиус земной орбиты при условии, что направление на звезду перпендикулярно к радиусу, называется годичным параллаксом звезды p. Если СТ = а есть средний радиус земной орбиты, МС = D - расстояние звезды М от Солнца С, а угол p - годичный параллакс звезды, то из прямоугольного треугольника СТМ имеем