Категории
Самые читаемые
onlinekniga.com » Домоводство, Дом и семья » Прочее домоводство » Курс общей астрономии - неизвестен Автор

Курс общей астрономии - неизвестен Автор

Читать онлайн Курс общей астрономии - неизвестен Автор

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 67 68 69 70 71 72 73 74 75 ... 109
Перейти на страницу:

или, по малости углов r и p0 , Форму небесных тел можно определить, измеряя различные диаметры их дисков. Если тело сплющенное, то один из его диаметров окажется больше, а один - меньше всех других диаметров. Измерения диаметров планет показали, что помимо Земли сплющенную форму имеют Марс, Юпитер, Сатурн, Уран и Нептун. Линейные размеры и форма небесных тел, угловые размеры которых непосредственно измерить нельзя (например, малые планеты и звезды), определяются специальными методами.

§ 68. Строение Солнечной системы

Солнце и совокупность космических тел, обращающихся вокруг него, образуют Солнечную систему. В Солнечную систему входят: Солнце, являющееся динамическим центром всей системы, 9 больших планет, 32 спутника планет, более 1800 малых планет или астероидов, много комет (наблюдались появления свыше 500 комет) и множество метеорных тел. Тщательные научные исследования дали обширную информацию о движении этих тел в пространстве, что позволяет составить достаточно точный план строения Солнечной системы. В приложениях к этой книге даны таблицы с числовыми характеристиками больших планет и их спутников - основных и наиболее массивных (после Солнца) членов Солнечной системы. Здесь же мы ограничимся лишь общим описанием ее строения. Все большие планеты движутся вокруг Солнца в одном направлении, против часовой стрелки, если смотреть со стороны северного полюса эклиптики (прямое движение). Их невозмущенные орбиты - эллипсы, с небольшими эксцентриситетами и малыми наклонениями к эклиптике. Вращение почти всех больших планет, а также Солнца и Луны, вокруг осей происходит в том же направлении, в котором планеты движутся вокруг Солнца (прямое вращение). Исключением являются Уран и Венера (см. § 135), у которых вращение обратное. Расстояния планет от Солнца образуют закономерную последовательность: промежутки между орбитами увеличиваются с удалением от Солнца (см. § 140, правило Тициуса-Боде). Среднее расстояние от Солнца самой далекой планеты Плутон составляет 39,75 а.е. Если это расстояние принять за радиус Солнечной системы, то он окажется примерно в 700 раз меньше расстояния до ближайшей звезды Проксимы Центавра. Спутники обращаются вокруг планет, подобно тому как планеты обращаются вокруг Солнца. Большинство спутников движется в прямом направлении, исключая 11 спутников с обратным движением, при этом 5 из них (спутники Урана) имеют, следовательно, то же направление движения, что и вращение планеты. Малые планеты, или астероиды, движутся вокруг Солнца, как и большие планеты, в прямом направлении. Их орбиты имеют в среднем большие эксцентриситеты и большие наклоны, чем орбиты больших планет. Большинство орбит астероидов расположено между орбитами Марса и Юпитера, однако некоторые из них могут заходить внутрь орбиты Меркурия (Икар) и удаляться до орбиты Сатурна (Гидальго). У некоторых астероидов обнаружено вращение вокруг осей, причем в ряде случаев оно оказывается обратным. Движение комет отличается большим разнообразием. Невозмущенные орбиты большинства комет - очень сильно вытянутые эллипсы с эксцентриситетами, близкими к 1. В редких случаях, в результате возмущений от планеты, кометы вблизи Солнца движутся по гиперболам (е > 1), но те же возмущения могут возвратить кометы на эллиптические орбиты. Расстояние в афелии у некоторых комет достигает 50 000-100 000 а.е., а период обращения - нескольких миллионов лет. У немногих короткопериодических комет орбиты почти круговые. Наклонения орбит комет также разнообразны и часто превышают 90°, т.е. кометы движутся вокруг Солнца как в прямом, так и в обратном направлении. Движение отдельных метеорных тел очень сложное, но многие из них образуют метеорные потоки, движущиеся по орбитам, подобным орбитам комет. Более детально характеристики тел Солнечной системы будут рассмотрены в гл. X.

§ 69. Движение Земли вокруг Солнца

Так как наблюдатель вместе с Землей движется в пространстве вокруг Солнца почти по окружности, то направление с Земли на близкую звезду должно меняться и близкая звезда должна казаться описывающей на небе в течение года некоторый эллипс. Этот эллипс, называемый параллактическим, будет тем более сжатым, чем ближе звезда к эклиптике и тем меньшего размера, чем дальше звезда от Земли. У звезды, находящейся в полюсе эклиптики, эллипс превратится в малый круг, а у звезды, лежащей на эклиптике, - в отрезок дуги большого круга, который земному наблюдателю кажется отрезком прямой (рис. 45). Большие полуоси параллактических эллипсов равны годичным параллаксам звезд.

Следовательно, наличие годичных параллаксов у звезд является доказательством движения Земли вокруг Солнца. Первые определения годичных параллаксов звезд были сделаны в 1835-1840 гг. Струве, Бесселем и Гендерсоном. Хотя эти определения были не очень точными, однако они не только дали объективное доказательство движения Земли вокруг Солнца, но и внесли ясное представление об огромных расстояниях, на которых находятся небесные тела во Вселенной. Вторым доказательством движения Земли вокруг Солнца является годичное аберрационное смещение звезд, открытое еще в 1728 г. английским астрономом Брадлеем при попытке определить годичный параллакс звезды у Дракона. Аберрацией вообще называется явление, состоящее в том, что движущийся наблюдатель видит светило не в том направлении, в котором он видел бы его в тот же момент, если бы находился в покое. Аберрацией называется также и сам угол между наблюдаемым (видимым) и истинным направлениями на светило. Различие этих направлений есть следствие сочетания скорости света и скорости наблюдателя. Пусть в точке К (рис. 46) находится наблюдатель и крест нитей окуляра инструмента, а в точке О - объектив инструмента. Наблюдатель движется по направлению КА со скоростью v.

Луч света от звезды М встречает объектив инструмента в точке О и, распространяясь со скоростью с, за время t пройдет расстояние ОK = сt и попадет в точку K. Но изображение звезды на крест нитей не попадет, так как за это же время t наблюдатель и крест нитей переместятся на величину KK1 = vt и окажутся в точке K1. Для того чтобы изображение звезды попало на крест нитей окуляра, надо инструмент установить не по истинному направлению на звезду КМ, а по направлению К0О и так, чтобы крест нитей находился в точке К0 отрезка К0К = К1К = vt . Следовательно, видимое направление на звезду К0М' должно составить с истинным направлением КМ угол s , который и называется аберрационным смещением светила. Из треугольника КО К0 следует:

или, по малости угла а,

(4.1)

где q - угловое расстояние видимого направления на звезду от точки неба, в которую направлена скорость наблюдателя. Эта точка называется апексом движения наблюдателя. Наблюдатель, находящийся на поверхности Земли, участвует в двух ее основных движениях: в суточном вращении вокруг оси и в годичном движении Земли вокруг Солнца. Поэтому различают суточную и годичную аберрации. Суточная аберрация есть следствие сочетания скорости света со скоростью суточного вращения наблюдателя, а годичная - со скоростью его годичного движения. Так как скорость годичного движения наблюдателя есть скорость движения Земли по орбите v = 29,78 км/сек, то, принимая с = 299 792 км/сек, согласно формуле (4.1), будем иметь s = 20”,496 sin q " 20”,50 sin q. Число k0 = 20”,496 " 20",50 называется постоянной аберрации. Так как апекс годичного движения наблюдателя находится в плоскости эклиптики и перемещается за год на 360°, то видимое положение звезды, находящейся в полюсе эклиптики (q = b = 90°), описывает в течение года около своего истинного положения малый круг с радиусом 20”,50. Видимые положения остальных звезд описывают аберрационные эллипсы с полуосями 20",50 и 20”,50 sin b , где b эклиптическая широта звезды. У звезд, находящихся в плоскости эклиптики (b = 0), эллипс превращается в отрезок дуги длиной 20”,50 × 2 = 41”,00, точнее, 40",99. Таким образом, самый факт существования годичного аберрационного смещения у звезд является доказательством движения Земли вокруг Солнца. Различие между параллактическим и аберрационным смещением заключается в том, что первое зависит от расстояния до звезды, второе только от скорости движения Земли по орбите. Большие полуоси параллактических эллипсов различны для звезд, находящихся на разных расстояниях от Солнца, и не превосходят 0",76, тогда как большие полуоси аберрационных эллипсов для всех звезд, независимо от расстояния, одинаковы и равны 20”,50. Кроме того, параллактическое смещение звезды происходит в сторону видимого положения Солнца, аберрационное же смещение направлено не к Солнцу, а к точке, лежащей на эклиптике, на 90° западнее Солнца.

§ 70. Смена времен года на Земле

Наблюдения показывают, что полюсы мира в течение года не меняют заметным образом своего положения среди звезд. Отсюда следует, что ось вращения Земли при движении ее вокруг Солнца остается параллельной сама себе. Кроме того, изменение склонения Солнца в течение года в пределах от + 23° 27' (в момент летнего солнцестояния) до - 23° 27' (в момент зимнего солнцестояния) свидетельствует о том, что ось вращения Земли не перпендикулярна к плоскости орбиты Земли, а наклонена к ней на угол в 66° 33' = 90° - 23° 27’. Следствием движения Земли вокруг Солнца, наклона оси вращения Земли к плоскости орбиты и постоянства этого наклона является регулярная смена времен года на Земле. Расположение Земли и ее оси вращения по отношению к направлению солнечных лучей в дни равноденствий и в дни солнцестояний показано на рис. 47. Угол между направлением солнечных лучей и нормалью к ровной площадке, расположенной горизонтально на поверхности Земли, в положении I равен i1 = j - e, в положении III - i3 = j + e, а в положении II - i2 = j , где e - наклон эклиптики к экватору, а j - географическая широта места.

1 ... 67 68 69 70 71 72 73 74 75 ... 109
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Курс общей астрономии - неизвестен Автор.
Комментарии