Категории
Самые читаемые
onlinekniga.com » Разная литература » Зарубежная образовательная литература » Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Читать онлайн Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 ... 85
Перейти на страницу:
округов иногда бывают неизбежными из-за таких особенностей местной географии, как реки, озера, леса и очертания побережий. Более того, избирательный округ может быть аккуратным и компактным и при этом очевидно организованным с целью манипуляций. Так, карта избирательных округов на выборах 2011 года в законодательное собрание штата Пенсильвания выглядела очень причудливо и неестественно, и в 2018 году республиканцы подготовили предложения по ее изменению. Предложенные округа полностью соответствовали пяти параметрам, определенным Верховным судом штата, но математический анализ распределения голосов в округах показал, что границы все равно не были объективными и заметно влияли на результаты голосования.

Даже масштаб карты может вызвать проблемы. Основная из них – фрактальность геометрии. Фрактал – это геометрическая фигура с детальной структурой во всех масштабах. Многие природные формы больше похожи на фракталы, чем на евклидовы треугольники и окружности. Береговые линии и облака можно очень эффективно моделировать в виде фракталов, что позволяет отразить их замысловатую форму. Термин «фрактал» пустил в обращение в 1975 году Бенуа Мандельброт, разработавший и активно продвигавший новую область – фрактальную геометрию. Береговые линии и реки представляют собой чрезвычайно извилистые фрактальные кривые, и их длина при измерении сильно зависит от того, насколько мелкий масштаб при этом используется. На самом деле длина фрактальной кривой теоретически бесконечна, что в переводе на язык повседневной реальности звучит так: «Измеренная длина возрастает безгранично по мере того, как вы рассматриваете объект все в больших подробностях». Так что юристы могут спорить до бесконечности об измерении периметра, не говоря уже о том, был ли данный избирательный округ изменен с целью манипуляции.

* * *

Поскольку странность формы такой неточный параметр, имеет смысл попробовать что-нибудь более определенное. Соответствуют ли результаты голосования статистическим избирательным паттернам электората?

Если на выборах идет борьба за 10 мест, а симпатии избирателей распределяются 60:40, то можно ожидать, что шесть мест получит одна партия, а четыре – другая. Если же одна партия получит все 10 мест, то можно заподозрить подтасовку. Однако на самом деле все не так просто. Результат такого рода обычен в мажоритарных системах голосования. Так, во время всеобщих выборов 2019 года в Великобритании Консервативная партия получила 44 % голосов, но 365 из 650 мест, что составляет 56 % всех мест. Лейбористы получили 32 % голосов и 31 % мест. Шотландские националисты с 4 % голосов получили 7 % мест (хотя это особый случай, поскольку их избирательная база целиком находится в Шотландии). Либеральные демократы получили 12 % голосов и 2 % мест. Большая часть несоответствий здесь была следствием региональных избирательных паттернов, а не странно проведенных границ избирательных округов. В конце концов, если результат двухпартийных выборов одного человека, скажем президента, решается простым большинством, то 50 % голосов (плюс один голос) будет достаточно для получения поста целиком.

Вот американский пример. В штате Массачусетс на федеральных и президентских выборах с 2000 года республиканцы получали в целом более трети голосов. Тем не менее в последний раз республиканцы занимали в этом штате хотя бы одно место в палате представителей аж в 1994 году. Подтасовка? Похоже, нет. Если эта треть республиканских избирателей распределена по территории штата более или менее равномерно, то, как бы вы ни проводили границы округов – исключая экстремальные варианты, при которых границы огибают дома отдельных граждан, – доля сторонников Республиканской партии в каждом округе составит приблизительно одну треть. Демократы победят везде. Именно так и происходило все эти годы.

Слева: предложение Светлых, при котором границы двух округов оставлены на усмотрение Темных. Справа: наиболее компактный вариант, который Темные могли бы выбрать

Во время одних реальных выборов математики показали, что такой эффект может оказаться неизбежным, как ни проводи границы, по крайней мере если не делить на части отдельные городки. В 2006 году, когда Кеннет Чейз боролся против Эдварда Кеннеди на выборах в сенат США, Массачусетс был разделен на девять избирательных округов. Чейз получил 30 % голосов, но проиграл во всех девяти округах. Компьютерный анализ вариантов показал, что ни один набор городов, объединенных в округ, даже если брать города, разбросанные по территории штата произвольным образом, не принес бы Чейзу победу. Его сторонники были распределены по большинству городов довольно равномерно, и обеспечить ему победу не удалось бы, какие границы ни проведи.

В уже знакомой нам Джерримандии, когда Темные выиграли во всех пяти округах, Светлые опротестовали это деление на округа на основании того, что прямоугольные округа получились слишком длинные и узкие, так что Темные, очевидно, занимались распылением. Суд постановил, что округа должны быть более компактными. Светлые разработали схему трех компактных округов и великодушно предложили Темным самим решить, как разделить еще на два округа оставшиеся территории. Темные запротестовали, потому что такое разбиение отдавало Светлым три округа, а Темным оставляло только два, хотя сторонников у них было больше.

Это деление показывает еще два недостатка использования критерия компактности как средства обнаружения манипуляций. Хотя деление и компактно, оно все равно отдает Светлым 3/5 округов при наличии у них всего 2/5 голосов. К тому же не существует способа разбить оставшиеся территории на два компактных округа. Из-за особенностей географии в Джерримандии трудно добиться компактности и справедливости одновременно. А может быть, и невозможно, в зависимости от определений.

* * *

Поскольку критерий компактности небезупречен, подумаем, как еще можно распознать деление на округа в пользу одной из партий. Данные голосования говорят нам не только об исходе выборов, но и о том, что было бы, если бы распределение полученных сторонами голосов сдвинулось на определенную величину. Например, если бы при голосовании в каком-то округе было отдано 6000 голосов за Темных и 4000 за Светлых, то Темные выиграли бы. Если бы 500 избирателей перебежали от Темных к Светлым, то Темные все равно выиграли бы, но если бы мнение изменил 1001 избиратель, то Темные проиграли бы. Если бы голоса распределились как 5500 за Темных и 4500 за Светлых, то достаточно было бы переманить всего 501 избирателя, чтобы изменить результат. Короче говоря, по данным голосования в округе можно узнать не только о том, кто победил, но и о том, насколько близки результаты соперников.

Можно выполнить этот расчет для каждого округа, собрать результаты воедино и посмотреть, как распределение полученных мест меняется со сдвигом голосов, и получить кривую места-голоса. (На самом деле это ломаная линия с множеством прямолинейных участков, но для удобства ее сглаживают.) Рисунок слева показывает, как приблизительно должна выглядеть такая кривая для неподтасованных выборов. В частности, эта кривая должна пересекать 50 %-ный порог для мест при 50 %-ном распределении голосов, и она должна быть симметричной

1 ... 3 4 5 6 7 8 9 10 11 ... 85
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт.
Комментарии