Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт
Шрифт:
Интервал:
Закладка:
На рисунке справа показана кривая места-голоса для карты округов во время выборов в конгресс штата Пенсильвания, при этом на горизонтальной оси отложены голоса Демократической партии. Демократам требовалось около 57 % голосов, чтобы получить 50 % мест. Эта карта впоследствии была изменена решением законодательного собрания штата.
В нескольких случаях Верховный суд США отверг обвинения в манипуляциях, сделанные на основании подобных расчетов, как, впрочем, и обвинения, основанные на недостаточной компактности округов. В деле LULAC v. Perry 2006 он все же принял решение об изменении некоторых границ избирательных округов в Техасе на том основании, что границы одного из округов противоречили Закону об избирательных правах. Хотя Верховный суд и объявил изменение избирательных округов в пользу одной из партий неконституционным, он фактически не отменил целиком ни одной карты округов.
График зависимости распределения мест от числа голосов. На горизонтальной оси отложен процент голосов, отданных за одну партию (показан интервал от 30 до 70 %). Вертикальная ось показывает процент мест, которые партия получила бы с таким количеством голосов
Главная причина, которую суд привел в обоснование своего отказа, состояла в том, что методы вроде кривой места-голоса построены на гипотетических предположениях относительно поведения избирателей в иных обстоятельствах. Возможно, для юристов это звучит убедительно, но математически это чепуха, поскольку кривая строится на основе реальных данных по голосованию и по точно определенной процедуре. Перенос голосов при расчете кривой не зависит от того, как конкретный избиратель может поступить в реальности. Это как посмотреть на счет в баскетбольном матче и сказать, что при счете 101:97 игра, должно быть, шла на равных, а при счете 120:45 – нет. Вы при этом не делаете предположений о том, как могли бы повести себя отдельные игроки, если бы играли лучше или хуже. Так что этот момент можно добавить к длинному и ничем не примечательному списку случаев неспособности закона понять или хотя бы просто оценить простую математическую логику. Якобы гипотетический характер этого совершенно строгого и основанного на фактах алгоритма служит предлогом для отказа от изменения карты избирательных округов Техаса.
* * *
В случае сомнительных юридических решений бесполезно поучать судей, поэтому сторонники математических методов распознавания манипуляций занялись поисками других показателей и критериев, которые невозможно отбросить по надуманным основаниям. Манипуляции заставляют сторонников одной из партий бесполезно тратить значительное количество голосов. Как только ваш кандидат получает большинство, все дополнительные голоса становятся лишними и никак не влияют на результат. А раз так, то при справедливом выборе границ избирательных округов обе партии должны тратить бесполезно примерно одинаковое число голосов. В 2015 году Николас Стефанопулос и Эрик Макги нашли новый метод подсчета бесполезных голосов – анализ разрыва в эффективности{12}. В деле Gill v. Whitford 2016 суд Висконсина объявил карту избирательных округов на выборах в законодательное собрание штата незаконной, и основанием для этого решения стал разрыв в эффективности. Чтобы посмотреть, как вычисляется разрыв в эффективности, упростим процесс до выбора из двух кандидатов.
Существует два основных способа сделать ваш голос бесполезным. Голос, отданный за проигравшего кандидата, бесполезен потому, что вы могли с тем же успехом не голосовать вообще. Лишний голос, отданный за победителя уже после того, как он набрал 50 %, бесполезен по той же причине. Справедливость этих утверждений зависит от реальных результатов и определяется задним числом: невозможно с уверенностью сказать, что ваш голос бесполезен, пока неизвестны результаты выборов. В ходе всеобщих выборов 2020 года в Великобритании кандидат от лейбористов в моем избирательном округе получил 19 544 голоса, а кандидат консерваторов – 19 143 голоса. Лейборист победил с перевесом в 401 голос при общем числе голосов, отданных за две партии, равном 38 687. Если бы какой-то избиратель решил не голосовать, перевес все равно составил бы 400 голосов. Но если бы от голосования воздержалось чуть больше 1 % сторонников Лейбористской партии, победил бы кандидат консерваторов.
Согласно определению, бесполезными у Консервативной партии стали все 19 143 голоса, а у Лейбористской партии – 200 голосов. Разрыв эффективности показывает, насколько у одной партии бесполезных голосов больше, чем у другой. В данном случае он равен:
Число бесполезных голосов консерваторов
минус
Число бесполезных голосов лейбористов
разделить на
Полное число голосов.
То есть (19 143–200)/38 687, что составляет +49 %.
И это всего один избирательный округ. Идея метода в том, чтобы рассчитать совокупный разрыв в эффективности для всех избирательных округов и добиться, чтобы законодатели установили целевое значение. Разрыв в эффективности всегда лежит между –50 % и +50 %, а справедлив разрыв, равный 0 %, поскольку в этом случае у обеих партий бесполезными оказывается одинаковое число голосов. В итоге Стефанопулос и Макги предложили считать, что разрыв в эффективности, выходящий за рамки ±8 %, указывает на манипуляции.
Однако и у этого способа измерения есть недостатки. Когда результаты близки, большой разрыв в эффективности неизбежен, и всего несколько голосов могут изменить его с почти +50 до почти –50 %. В моем избирательном округе манипуляций не было, несмотря на разрыв в эффективности +49 %. Если бы всего 201 человек, вместо того чтобы отдать голос лейбористам, проголосовал за консерваторов, он был бы равен –49 %. Если одной из партий просто везет и она побеждает в каждом округе, кажется, будто это результат манипуляций. Демографические факторы также могут искажать картину. В деле Gill v. Whitford защита справедливо указала на эти недостатки, но истцы заявили, что к данному случаю они отношения не имеют, и выиграли дело. Однако в целом такие возражения совершенно оправданны.
В 2015 году Майра Бернштейн и Мун Дучин{13} нашли у разрыва в эффективности еще ряд недостатков, а в 2018 году Джеффри Бартон показал, как можно устранить их{14}. Предположим, например, что у нас есть восемь округов и в каждом из них Светлые получают 90 голосов, тогда как Темным достаются оставшиеся 10. У Светлых при этом бесполезных голосов 40 × 8 = 320, а у Темных – 10 × 8 = 80, так что разрыв в эффективности составляет (320–80)/800 = 0,3 = 30 %. Если принять предложенный 8 %-ный порог, то такой разрыв в эффективности говорит о манипуляциях, направленных против Светлых. Но Светлые по результатам голосования получили все восемь мест!
Второй сценарий вскрывает еще один вопрос. Предположим, что Светлые побеждают в трех округах 51:49, тогда как Темные – в двух с таким же результатом 51:49. Тогда у Светлых пропадает 1 + 1 + 1 + 49 + 49 = 101 голос, а