Живое и неживое. В поисках определения жизни - Карл Циммер
Шрифт:
Интервал:
Закладка:
В 1960-е гг. к этому крохотному сообществу присоединился студент-медик Стюарт Кауфман[403]. В то время биологи как раз начали выявлять принципиальные связи между генами и белками, благодаря которым и возможна жизнь. Они узнали, что определенные гены становятся активными, только если на ДНК поблизости есть определенный белок. Они нашли некоторые звенья в длинных цепочках реакций, осуществляющих метаболизм. Кауфман задумался, не скрываются ли за головоломными подробностями поведения конкретных белков у конкретных видов некие особые принципы.
Кауфман разработал своего рода клеточную алгебру, которую применил для компьютерного моделирования гипотетических генов и белков. В ходе одного из экспериментов он попытался смоделировать простейший метаболизм. В качестве пищи он предложил использовать два вида молекул, условно говоря А и Б. У них была определенная вероятность соединиться друг с другом в более крупную молекулу АБ. У АБ, в свою очередь, была определенная вероятность тоже с чем-то соединиться и образовать еще более крупные молекулы. Присоединение дополнительной Б давало АББ, объединение двух АБ давало АБАБ. Смоделированный Кауфманом метаболизм позволял укрупнять молекулы, но автор также запрограммировал возможность для части крупных молекул расщепляться обратно на фрагменты.
Применяя различные правила синтеза и расщепления молекул, Кауфман испытал ряд метаболических сетей. Большинство из них мало к чему привело. Таким сетям удавалось лишь усваивать скормленные им А и Б и синтезировать небольшие молекулы, крупные же не получались. Однако исследователю то и дело попадались сети, которые выглядели жизнеспособными. В подобных сетях, как обнаружил Кауфман, некоторых из возможных молекул становится все больше и больше. Этих некоторых стало очень много, и они продолжали изобиловать, пока экспериментатор продолжал кормить сеть.
Кауфман нашел, что успешные молекулы объединены в циклы химических реакций. Первая молекула стимулировала рост второй, которая стимулировала рост третьей, и т. д. вплоть до последней молекулы в цикле, которая помогала первой. Как только молекул каждого типа становилось больше, они помогали синтезу своих партнеров в самоподдерживающемся цикле.
Такие сети исследователь назвал автокаталитическими системами, что вызывает в памяти слово «катализатор», означающее любое вещество, которое ускоряет химическую реакцию между двумя другими веществами. Ферменты как раз один из видов катализаторов, есть и катализаторы-металлы. Например, в нейтрализаторах автомобильных двигателей для уменьшения токсичности выхлопных газов в качестве катализатора используется платина. Нефть – продукт катализаторов, действующих в недрах земли под дном океана[404]. По утверждению Кауфмана, автокаталитические системы отличаются от обычных катализаторов тем, что их компоненты катализируют друг друга.
Хотя ученый открыл автокаталитические системы компьютерным путем, он пришел к убеждению, что они отражают некое ключевое свойство жизни. Исследователь предположил, что и живые существа поддерживают свою жизнь за счет сети молекул – естественно, настоящих, а не компьютерных[405]. Теория жизни, опирающаяся на автокаталитические системы, не будет нуждаться в таинственных витальных силах, наделяющих жизнью неживую материю. Когда Кауфман моделировал случайные системы, в них самопроизвольно формировались автокаталитические циклы.
К 1980-м гг. его идеи по поводу автокаталитических систем были признаны и другими учеными. Теория Кауфмана оказалась полезным руководством к размышлению о живом. Но поначалу исследователи могли наблюдать подобные системы в действии лишь на компьютере, где сетям предлагался цифровой корм. Однако затем химикам удалось создать автокаталитические системы не из нулей и единиц, а из настоящих молекул. Одну из самых сложных таких систем создал Реза Гадири[406], химик из Исследовательского института Скриппса[407]. Он со своими коллегами использовал небольшие аминокислотные цепочки – пептиды. Экспериментаторы создали набор пептидов, способных выстраивать пептидные фрагменты в линию и соединять их. Смешав десятки различных пептидов и пептидных фрагментов, ученые оставили этот коктейль настаиваться без помех. В итоге самопроизвольно возникла автокаталитическая система из девяти пептидов, способных выстраивать друг друга из фрагментов и плодить миллионы новых копий.
Получается, что автокаталитические системы не просто математические фантазии. Но из этого не следует, что они типичны для природы. Смесь химических соединений с гораздо большей вероятностью просто достигнет равновесия, и реакции дальше не пойдут. Почему автокаталитические системы возникают редко, пока не понятно. Возможно, для них необходим приток молекул в нужном соотношении, иначе они не смогут создавать достаточное количество новых соединений для поддержания нужных реакций. Возможно также, что подобные системы имеют тенденцию схлопываться и разваливаться. Только если они обладают быстро восстанавливающейся структурой, например в их циклы вложены другие циклы, они способны выдерживать трудные периоды, когда нужных ингредиентов недостает.
Ученым придется решить подобные вопросы, прежде чем идея автокаталитических систем сможет стать компонентом полноценной теории жизни[408]. Не исключено, что такая теория сумеет объяснить, как жизнь поддерживает свое существование, а возможно даже, что еще важнее, как она возникла. В 2019 г. Стюарт Кауфман с двумя коллегами проанализировал сценарий Дэвида Димера, согласно которому жизнь началась с РНК-содержащих протоклеток в пересыхающих водоемах. Исследователи дали приблизительные оценки разнообразия молекул РНК, которые могли образоваться в таком пруду, и пришли к выводу, что один-единственный водоем был вполне способен породить автокаталитический набор молекул РНК. Однажды начавшись, этот самоподдерживающийся химический процесс[409] мог затем привести к эволюции живых существ. Иными словами, жизни могли предшествовать автокаталитические системы.
_______Живые объекты особенные, но они не единственное, что есть особенного во Вселенной. В 1911 г. голландский физик Хейке Камерлинг-Оннес[410] обнаружил, что тонкий провод из ртути при охлаждении до температуры, близкой к абсолютному нулю, становится более чем особенным. При обычных температурах ток, проходя по металлической проволоке, теряет часть энергии – это свойство материала называется сопротивлением. Когда Камерлинг-Оннес охлаждал свой ртутный провод в жидком гелии, сопротивление металла постепенно снижалось, пока температура не достигла –269 ℃. И тут оно внезапно падало до нуля. Если ученый делал из провода петлю, ток мог проходить по ней сколь угодно долго безо всяких потерь.
«Ртуть перешла в новое состояние, – объявил Камерлинг-Оннес, – которое в силу его необычайных электрических свойств может быть названо состоянием сверхпроводимости».
Впоследствии голландский ученый обнаружил, что и другие металлы, например олово и свинец, способны переходить в это новое состояние при температурах, близких к абсолютному нулю. Определенные сплавы могли становиться сверхпроводимыми и при более высоких температурах. Физики бросились изучать сверхпроводимость