Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Медицина » Атеросклероз - Аурика Луковкина

Атеросклероз - Аурика Луковкина

Читать онлайн Атеросклероз - Аурика Луковкина

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 6 7 8 9 10 11 12 13 14 ... 18
Перейти на страницу:

Это еще можно объяснить тем, что в связи с увеличением ЛПОНП, соответственно ЛПНП образуется меньше; а именно последние признаны наиболее атерогенными частицами.

ЛПНП

ЛПНП. Эти липопротеидные частицы содержат в своем составе примерно 21 % белка и 79 % липидов, причем в последних превалирует холестерин. Именно в связи с этим, данный класс липопротеидов, имеет наибольшее отношение к атерогенезу.

Состав липидов в данной частице приблизительно следующий; триглицеридов – от 8 до 33 %; фосфолипидов – от 10 до 30 % общего холестерина – от 25 до 48 % – (причем эстерифицированный холестерин в ядре этого липопротеида уже выделен в особую зону, а не растворен в нейтральных жирах, как в ЛПОНП) (рис. 6).

Образуются ЛПНП в печени (иногда – в клетках кишечника, особую роль в повышении синтеза этих липопротеидов печень занимает при гиперлипопротеидемии II типа, когда количество их резко возрастает).

Также ЛПНП образуются в результате метаболизма их предшественников, т. е. ЛПОНП.

Известно, что практически все клетки организма способны синтезировать холестерин сами, но при невозможности обеспечить себя им полностью, основной способ получения ими холестерина – доставка его через ЛПНП (в меньшей степени – от ЛПОНП). При необходимости, невостребованный холестерин вместе с этими липопротеидами вновь возвращается в печень, где по мере надобности он идет для образования желчных кислот или других нужд, то есть в организме холестерин расходуется экономно.

Период полужизни ЛПНП от 2 до 4 суток, расщепление их происходит в надпочечниках, печени, селезенке, половых железах, а также в других органах и тканях.

Механизм распада ЛПНП на белок (который затем расщепляется до аминокислот), эстерифицированный холестерин (в дальнейшем распадается на свободный холестерин и жирные кислоты), триглицериды и фосфолипиды (подвергающиеся также, дальнейшему расщеплению) описан в 1975–1977 гг. M. Row и J. Goldstein.

Рис. 4. Структура b – липопротеидов по Surgenor

Действие происходит в гладкомышечных клетках сосудов, лимфоцитах и различных других местах при действии специфических рецепторов, связывающих ЛПНП.

Известный как II тип семейной наследственной дислипопротеидемии получил название гипербеталипопротеидемии и связан с недостаточностью деятельности данных рецепторов. Здесь гиперхолестеринемия обусловлена накоплением в крови уровня ЛПНП, а следовательно и холестерина; а также увеличением периода полураспада этого липопротеида до 6 дней и более.

Все это способствует образованию в большей степени модифицированных форм ЛПНП, что способствует усиленному атерогенезу. Для данного типа (II типа гиперхолестеринемии) характерно более раннее и быстрое развитие атеросклероза и его осложнений.

ЛПВП

Этот класс липопротеидов содержит в себе примерно 52 % белка и приблизительно 48 % липидов, из которых наибольшее количество относятся к группе фосфолипидов (до 40 %).

На долю ТГ приходится примерно 5 %, холестерина – от 20 до 35 %.

Образование ЛПВП происходит главным образом в печени, хотя есть данные, что в этом участвуют и клетки кишечника). В плазме крови синтез ЛПВП может происходить за счет расщепления предшествующих классов липопротеидов, богатых в основном триглицеридами (т. е. из ХМ и ЛПОНП).

Известно также, что из ХМ и ЛПОНП свободный (т. е. не– эстерифицированный) холестерин свободно переходит на наружный слой частицы ЛПВП; таким же образом происходит обогащение и фосфолипидами (главным образом, лецитином). Основная роль ЛПВП, по последним данным связана со способностью убирать избыточный холестерин с наружной поверхности тех липопротеидов, которые обогащены им, а также из различных органов и тканей, нуждающихся в освобождении от холестерина для обратного транспорта данного холестерина в печень, где он, по мере надобности, подвергается окислению. Таким образом, ЛПВП обладает антиатерогенным эффектом. Замечено, что между этими двумя липопро– теидами существуют обратно пропорциональные отношения: чем выше уровень ЛПВП, тем быстрее происходит липолиз ЛПОНП.

Период полужизни этого липопротеида – около 5 суток; его расщепление происходит, видимо, в печени и (в меньшей степени) во многих других органах и тканях.

При уменьшении скорости катаболизма данного липопро– теида и накоплении его в плазме крови в повышенном количестве (что считается антиатерогенным фактором) частота развития атеросклероза и соответственно заболеваемость ИБС и другими ишемическими формами снижена, т. е. повышение спектра данной фракции по сравнению с другими липопро– теидами рассматривается как фактор, способствующий здоровью и долголетию.

Итак, мы рассмотрели строение и функции липопротеидов основных групп, а также познакомились с первичными, генетически обусловленными гиперлипопротеинемиями, связанными с преобладанием в плазме крови определенного класса липопротеидов.

Теперь, убедившись в слаженной работе всех липидов организма, каждый из которых играет определенную роль в процессах жирового обмена, попробуем разобраться какие сбои в их деятельности приводят к изменениям, запускающим процесс атерогенеза.

Ранее уже отмечалось, что самая богатая холестерином фракция липопротеидов – это ЛПНП, и именно она наиболее связана с появлением атеросклеротических изменений в сосудах.

Однако в 80—90-е годы появились данные, уточняющие что среди неоднородной самой по себе группы ЛПНП можно выделить наиболее высокоатерогенные их подфракции, которые благодаря перекисному окислению их липидов приобретают более агрессивные свойства.

Выявлено, что эти так называемые модифицированные ЛПНП избирательно накапливаются внутри клеток артерий в зонах атеросклеротических поражений, но не выявляются в клетках здоровой ткани.

Перекисное окисление липидов в организме было обнаружено уже давно, и причины его разнообразны. Так, например, под влиянием различных метаболитов, образующихся в процессе жизнедеятельности органов и тканей может увеличиваться концентрация свободных радикалов, которые, в свою очередь, вступая с липопротеидами в реакцию, патогенно изменяют их. Известно также что организм человека имеет защиту от данного явления; и это большая группа соединений, оказывающая блокирующий эффект, на процессы свободно радикального окисления органических веществ в клетке, т. е. антиоксиданты. Антиоксиданты тормозят переход обычных ЛПНП в модифицированные, угнетая химическую реакцию окисления липидов. Известно, что к эндогенным антиоксидантом относят некоторые аминокислоты (цистеин, метионин, глутатион), белки, содержащие сульфгидрильные группы, фосфолипиды (лецитин, кефалин); а также многие витаминные препараты (токоферол, рутин, акскорбиновая кислота).

Из лекарственных средств сюда относятся радиопротекторы (меркамин, цистамин), противоопухолевый препарат дибунол и др.

Предполагалось, что модифицированные ЛПНП образуются в плазме крови, а затем, в силу своей токсичности, повреждая интиму артерий могут проникать в нее и там накапливаться. Но, учитывая что при опытах, в которых происходило иммуноспецифическое экстракорпоральное удаление липопротеидов и при аферезе, не было получено достаточного положительного эффекта на механизм блокировки атерогенеза, можно предположить, что процесс периоксидации ЛПНП скорее всего происходит в самой интиме сосудов. Это подтверждено тем фактом, что в первичной культуре эндотелия, взятого из пораженных атеросклерозом сосудов, блокирована внутриклеточная деградация модифицированных ЛПНП, в то время как катаболизм нативных ЛПНП осуществлялся нормально.

Таким образом, огромное значение в механизме атерогенеза играет сама сосудистая стенка. И здесь также предложен ряд теорий, пытающихся объяснить какие именно процессы стимулируют накопление в клетках интимы модифицированных ЛПНП, а следовательно и имеющегося в его комплексе холестерина.

В последние годы, когда интенсивно изучалась морфология артерий, было выявлено более 80 типов различных рецепторов, находящихся на поверхности клеток сосудистой стенки, воспринимающих действие на них различных медиаторов, гормонов, биологически активных веществ через внутриклеточные сигналы – посредники (такие как ионы кальция, ИТФ, ЦАМФ).

При исследовании базального уровня ЦАМФ в клетках артерий, где имелись липидные полоски или атеросклеротические бляшки, выявлено уменьшение его в 3 и 5 раз соответственно.

Это дает основание предположить, что первичные биохимические, морфологические и функциональные изменения в сосудистой стенке, которые классифицируются как проявление атеросклероза, имеют в своей основе дисбаланс передачи рецепторных сигналов через систему вторичных мессенджеров (Чазов Е. И.).

На долю внутриклеточного холестерина, как известно, приходится 93 % всего холестерина, находящегося в организме человека.

1 ... 6 7 8 9 10 11 12 13 14 ... 18
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Атеросклероз - Аурика Луковкина.
Комментарии