Диалоги (июнь 2003 г.) - Александр Гордон
Шрифт:
Интервал:
Закладка:
Кинетически можно показать, какая будет разная кинетика. Вот здесь экспериментальные данные. Я не хочу подробно аргументировать всё это дело. Тут разная кинетика будет, но были сделаны опыты, которые показали, что действительно, структура взаимного расположения переносчиков… Опять не вдаюсь в подробности, если будет интересно, могу сказать. Мне кажется, важен смысл. На следующем рисунке я могу показать это схематически. Человечки имитируют перенос электрона. Вы их заморозили в темноте в таком положении, и они кидают электроны туда-сюда с такого положения. А теперь вы начинаете освещать и одновременно замораживать. И в зависимости от скорости освещения они взяли электрон и бегут с ним, а вы их ловите в разных местах. И вот тут-то они начинают уже играть по-другому, поскольку они попали в разные места, застыли в разных местах на пути своего естественного движения. Как биофизики у нас говорят, это принцип электронно-конформационных взаимодействий. И он не является чем-то специфическим для фотосинтеза. Вот на следующем рисунке, гемоглобин. Известно, он переносит кислород в крови. Как он работает?
У него есть четыре большие субъединицы и один атом железа, скажем, который получается так. Вы присоединяете кислород к атому железа. Атом железа вдвигается в ароматическую периферийную плоскость. Но что получается дальше? Это даёт начало каскаду конформационных изменений, в результате которых каждая последующая субъединица аксигинируется с энергией активации, меньшей чем предыдущая. Корпоративное такое изменение. Что это такое, в чём принцип, почему это движущая сила?
Когда вы присоединили кислород, железо даже не поменяло эквивалентность. Но это новое электронное состояние, которое требует новой конформации. И это просто сила физического принципа поиска минимума энергии, система спонтанна, никто её не толкает. Она спонтанно ищет новый минимум энергии и находит его на пути последовательной аксигинации субъединиц. Вот, кстати, один из принципов машинного поведения. Это использование физического принципа. Здесь нет новых физических принципов. Система их использует. Иногда видоизменяет до полной неузнаваемости. То есть, они остаются. Нарушения законов физики нет, это понятно. Но они используются. Секрет состоит не в принципах, а в том, как они используются.
Кто их придумал – понятно. Либо Бог, либо природа, что в данном случае одно и то же. И наша задача – понять, что там внутри происходит. Но гемоглобин – это классический пример такого машинного поведения, который давным-давно известен. И то, что я рассказал, является одним из хороших примеров, который иллюстрирует принцип электронно-конформационных взаимодействий, как основы функционирования макромолекулы. И сейчас дальнейшая задача – расшифровать всё это дело. Я могу упомянуть многие другие, казалось бы, далёкие от фотосинтеза, молекулярные машины. Например, бактерию радопсина, это фермент зрительный. Атефаза. Это всё вещи, казалось бы, разные. Каналы, которые в мембранах пропускают йоны. Это всё одни и те же идеи. Идеи, которые связаны с тем, что идёт изменение электронного состояния. Толчок, меняется равновесие конформационное. Оно дальше начинает изменяться спонтанно, в поисках своего минимума. Это физический принцип. А это всё имеет осмысленный характер, но на молекулярном уровне. Я бы даже не стал кавычки перед словом «осмысленный» здесь ставить.
А.Г. Скорее, это целесообразность.
А.Р. Целесообразность. Но, понимаете, мы не привыкли говорить об осмысленности, о целесообразности на уровне одной молекулы. Но вот на уровне макромолекулы, видимо, можно так говорить.
А.Г. Но физики – особенно в квантовой механике – говорят ведь о «свободе воли электрона».
А.Р. Я думаю, там немножко другое имеется в виду. Я не физик-теоретик, поэтому осторожно буду говорить. С одной стороны, осторожно, с другой стороны – об области, о которой слышал, но мало знаешь, можно свободно говорить. Так часто бывает. Но я тут осторожно бы о свободе воли говорил. Во всяком случае, это похоже на экскурс в область того, как взглядом люди отклоняют электрон. Ну, есть много в жизни чудес, но друг Гораций… И что там на самом деле – Бог его знает. Но в данном случае, принцип такой вполне конкретно иллюстрируется.
Сейчас речь идёт о том, чтобы с помощью методов ядерного, магнитного резонанса, других методов расшифровать эти механизмы. В случае гемоглобина это всё очень хорошо биохимики уже сделали. Но в других молекулярных машинах расшифровать конкретные движения, понять механизм движения ещё не удалось. В фотосинтезе движение различается, как я уже говорил, в пределах одной макромолекулы. От десять минус в двенадцатой, до десять во второй секунд. Это колоссальный, принципиальный вызов молекулярной физике. Она, конечно, решит этот вопрос, вместе с биологами это будет сделано.
Но в оставшееся время я хотел бы вам, если можно, рассказать о том, как это можно применить в практике. Что это даёт, вообще говоря, просто конкретно. Я несколько слов скажу. Это сложная, в общем, система – фотосинитическая. Достаточно сложная. Она не такая уж сложная, как все клетки, но достаточно сложная для процессов моделирования. И возникает вопрос, а можно ли понять, как эти начальные процессы вообще регулируются – как-то со стороны всей клетки или нет? И по каким показателям можно об этом судить. Здесь сразу речь идёт о сложных системах.
Сейчас мы, пользуясь мощью современных компьютеров, стоим на пути того, что можно смоделировать поведение всей клетки. Но в данном случае, я буду говорить о поведении фотосинитической системы. И здесь встаёт целый ряд принципиальных вопросов регуляции сложной системы. Мы знаем принцип узкого места. Правильный принцип, но я бы сказал, упрощённый. В сложной системе много узких мест.
В фотосинтезе есть какой-то показатель, по которому можно судить о системе в целом. Показатель такой. Вот рисунок.
Флуоресценция – это та часть энергии, которая не используется в фотосинтезе. И мы можем, изучая характер флуоресценции (как она меняется при начале работы фотосинтеза) судить о том, сколько энергии запасается в фотосинтезе. Чем больше мы получаем флуоресценции, тем меньше идёт на фотосинтез. Выход флуоресценции, будем так говорить, порядка одного процента. То есть, по одному проценту нам предлагается судить о том, что делалось с остальными 99-ю. Это примерно то же самое, как если бы из любопытства мы хотели бы узнать, скажем, какой бюджет у соседей, а они вас не пускают домой, чтобы вы увидели, что они там едят. Но вы можете лазить в их мусорное ведро и смотреть, сколько бутылок они выкинули или ещё чего-нибудь. А потом пересчитать все те основные продукты, которые они при этом потребляют.
Вот в таком положении мы в отношении природы. Она со своего стола кидает нам флуоресценцию и говорит: «Догадайтесь, чего я там делаю в основном за столом». Так вот, начиная с фотосинтеза, вначале не удаётся всё переработать. Электроны восстанавливают промежуточные переносчики, здесь флуоресценция большая. Потом постепенно начинает раскачиваться система. И флуоресценция уменьшается. По разности между максимальной флуоресценцией, когда все центры закрыты, и обычной, при небольшом освещении, мы можем судить о потенциальной эффективности работы фотосинтеза. И оказывается, что это можно использовать в двух отношениях.
Во-первых, существуют различные фотосинитические системы. Есть листья, фитоплантон, который в океане, и очень важно определить эффективность фотосинтеза. Для фитоплантона, для рыболовного хозяйства это вообще очень важно. Рыба пойдёт туда, где есть чем питаться, где фитоплантон. Это очень важно. А с другой стороны, хлорофилл, который сидит в мембране, как я уже говорил, он очень чувствителен к всевозможным антропогенным загрязнениям – гербициды, ещё что-нибудь, что проникает в клетку. И когда в клетку они проникают, они меняют состояние мембран, а, как следствие, меняется флуоресценция хлорофилла. Как правило, она портится – в том числе и состояние хлорофилла, а флуоресценция увеличивается.
А.Г. Запасается меньше.
А.Р. Да, совершенно верно. И это можно использовать. С одной стороны, разность между максимальной и нулевой флуоресценцией есть показатель эффективности работы фотосинтетического аппарата. И можно в автоматическом режиме измерять эту интенсивность флуоресценции в морях и океанах. Я покажу некоторые примеры, и что это даёт. А с другой стороны, можно посмотреть, как это регулируется всей клеткой. И потом этот показатель можно использовать, для того чтобы посмотреть – всё ли в порядке в фотосинитической системе? И как следствие, а всё ли в порядке в окружающей среде, поскольку растения, фитоплантон, они чувствуют, что происходит вокруг и могут быть просто индикатором состояния. Вот у нас на кафедре мы ведём уже давно большие работы. Вообще всё, что я рассказываю – это результат работы, в основном, моей кафедры, конечно, но и большого количества сотрудников. Я просто не могу перечислить все фамилии моих друзей и коллег сейчас. Но поскольку я не научный доклад делаю, я думаю это позволительно.