Категории
Самые читаемые
onlinekniga.com » Разная литература » Зарубежная образовательная литература » Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Читать онлайн Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 38 39 40 41 42 43 44 45 46 ... 85
Перейти на страницу:
Так что даже в волоконной оптике 1990-х годов использовались квантовые компоненты, а на сегодняшний день это утверждение стало еще более верным.

В будущем появится громадное разнообразие новых квантовых устройств, которые преобразят нашу жизнь. Принцип неопределенности Гейзенберга для квантовой механики гласит, что определенные наблюдаемые параметры невозможно точно измерить в одно и то же время – например, если вы знаете, где в точности находится частица, то не можете с уверенностью сказать, как быстро она движется. Это свойство позволяет определять, не слушает ли секретные сообщения кто-нибудь, не имеющий такого права. Когда Ева (устройство перехвата сообщений) потихоньку наблюдает за квантовым состоянием проходящего сигнала – скажем, за спином фотона, – то состояние изменяется и она не может контролировать характер этого изменения. Как будто в сообщение встроен колокольчик, который звонит всякий раз, когда Ева пытается это сообщение прочесть.

Схематичное изображение структуры SCH-лазера. Термины n-тип и p-тип относятся, соответственно, к полупроводникам, где заряд переносится электронами или «дырками»

Один из способов реализации этой идеи состоит в использовании квантовой фотоники – квантово-механических свойств фотонов. Другой способ – манипулирование спинами квантовых частиц, этим занимается развивающаяся область – спинтроника. Подобные устройства могут переносить больше информации, чем традиционный сигнал, за счет кодирования дополнительных данных в спинах частиц, а не только в их присутствии или отсутствии. Так что моя сверхбыстрая оптоволоконная широкополосная связь, вполне возможно, скоро превратится в супер-пупер-быструю спинтронную широкополосную связь, способную по тому же кабелю передать гораздо больше информации. И она будет действовать, пока какой-нибудь умник не изобретет шестимерную гиперчеткую сенсорную голографию и не перекроет разом всю эту дополнительную пропускную способность.

7

Папа, ты научился перемножать триплеты?

Океанские волны мягко плещут о борт вашего корабля в игре ASC: Dlack Flag? Это математика.

Пули свистят над вашей головой в игре Call of Duty: Ghosts? Это математика.

Соник может быстро бегать, а Марио умеет прыгать? Это математика.

Проходите поворот юзом на скорости 80 миль в час в игре Need for Speed? Это математика.

Несетесь на сноуборде по склону в игре SSX? Это математика.

Ракета уносится со старта в игре Kerbal Space Program? Это математика.

ОФИЦИАЛЬНЫЙ САЙТ FORBES.

«За Super Mario стоит математика»

Деревня имеет средневековый вид, дома в ней крыты тростником, по грязной дороге катятся запряженные лошадьми повозки, вокруг виднеются засеянные поля и пасущиеся овцы. Узкая лента реки тянется меж тесно стоящих домиков, посверкивая золотом в свете заходящего солнца. Мы видим эту сцену сверху, как будто с самолета – когда самолет закладывает вираж или покачивает крыльями, вид тоже поворачивается и раскачивается. Но это не самолет: на экране появляются новые кадры – теперь это вид с земли, откуда просматривается силуэт дракона. Он приближается. Снова смена плана, мы видим пейзаж глазами дракона, который пикирует, скользит над крышами, изрыгает пламя, пересохший тростник вспыхивает…

Это может быть кино или компьютерная игра – в наше время то и другое порой трудно отличить друг от друга. В любом случае это триумф сгенерированной компьютером графики – CGI.

Математика ли это?

О да!

Должно быть, это какая-то новая математика.

Не слишком. Такое применение для нее действительно является новым, да и сама математика здесь в какой-то мере новая и хитроумная, но в той части, которую я имею в виду, ей уже около 175 лет. И эта часть математики раньше не предназначалась для компьютерной графики. Да и компьютеров тогда не было.

А предназначалась она для работы с более общей проблемой, не имеющей отношения к «железу»: с геометрией в трехмерном пространстве. С сегодняшней точки зрения потенциальная связь этой области с компьютерной графикой очевидна. Но она была похожа не на геометрию, а скорее на алгебру. Если, конечно, не считать, что она нарушает одно из базовых алгебраических правил. Придумал ее ирландский математический гений сэр Уильям Роуэн Гамильтон, который назвал свое изобретение кватернионами. По иронии судьбы кватернионы оказались не совсем тем, что он искал, и это было не случайно.

Того, что он искал, попросту не существовало.

* * *

Сегодня на нашей планете компьютеров больше, чем людей. Как известно, представителей рода человеческого насчитывается 7,6 млрд. А одних только ноутбуков на Земле больше 2 млрд, а еще существует почти 9 млрд смартфонов и планшетов, причем те и другие часто обладают большей вычислительной мощностью, чем лучший суперкомпьютер, который можно было купить в 1980 году{52}. А если учесть еще крохотные компьютеры, которые производители массово втискивают в посудомоечные машины, в тостеры, холодильники, стиральные машины и дверцы для кошки, то количество компьютеров превысит численность людей вчетверо.

Сейчас трудно представить, что так было не всегда. Инновационные изменения носят взрывной характер. Первые домашние компьютеры – Apple II, TRS-80, Commodore PET – появились на потребительском рынке в 1977 году, то есть больше 40 лет назад. Почти с самого начала одной из главных сфер применения домашних компьютеров стали игры. Графика была примитивной, игры очень простыми.

По мере того как компьютеры становились все быстрее, память росла, а цены падали, качество картинок росло, и компьютерная графика начала завоевывать киноиндустрию. Первым полнометражным анимационным фильмом, целиком сделанным на компьютере, стала «История игрушек» в 1995 году, хотя более короткие ролики начали появляться десятилетием раньше. К сегодняшнему дню спецэффекты стали сверхреалистичными и используются так широко, что мы едва их замечаем. Когда Питер Джексон снимал трилогию «Властелин колец», он не беспокоился об освещении вообще: с ним разбирались после, при последующей компьютерной обработке.

Мы настолько привыкли к высококачественной, быстро движущейся графике, что редко задумываемся, откуда это все взялось. Когда появилась первая видеоигра? За 30 лет до того, как мир увидел первые домашние компьютеры. В 1947 году пионеры телевидения Томас Голдсмит – младший и Эстл Рэй Манн оформили патент на «развлекательное устройство на основе катодно-лучевой трубки». Катодно-лучевая трубка – это короткая толстая стеклянная бутылка с широким, слегка выпуклым основанием – экраном – и узкой горловиной. Устройство в горловине бомбардирует экран потоком электронов, а электромагниты изменяют направление этого потока так, что он делает на экране последовательные горизонтальные проходы, подобно движению человеческого глаза при чтении текста. Электронный луч, попадая на переднюю часть трубки, вызывает свечение специального покрытия и создает яркую точку. В большинстве телевизоров для создания изображения использовались именно катодно-лучевые трубки (еще их называют электронно-лучевыми), пока в 1997 году на рынке не появились телевизоры с плоским экраном. Игра Голдсмита и Манна родилась под впечатлением от радарных дисплеев Второй мировой войны. Световая точка представляла летящую ракету, а игрок пытался заставить ее попасть в цель, которую рисовали на

1 ... 38 39 40 41 42 43 44 45 46 ... 85
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт.
Комментарии