Категории
Самые читаемые
onlinekniga.com » Разная литература » Зарубежная образовательная литература » Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Читать онлайн Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 55 56 57 58 59 60 61 62 63 ... 85
Перейти на страницу:
простой способ сделать это – обратная проекция. Он позволяет как бы размазать черно-белое распределение вдоль направления луча, причем размазать однородно. Так что мы получаем квадратную область, заполненную серыми полосками разных оттенков. Чем выше в данном месте график, тем темнее получается полоска. Мы интуитивно размазываем серый цвет вдоль полоски, поскольку не можем определить из одной проекции, где именно располагаются конкретные внутренние органы.

Мы можем проделать эту операцию для каждого направления оригинальной серии сканов. Обратная формула Радона говорит, что, если наклонить все эти полосатые картинки на соответствующий угол и наложить друг на друга, так чтобы в каждой точке оттенки серого сложились, то результат – надлежащим образом отмасштабированный – покажет первоначальное распределение внутренних органов. На следующем рисунке видно, как это работает, если первоначальное изображение – квадрат и мы восстанавливаем его при помощи обратной проекции с нескольких (от 5 до 100) направлений. Чем больше направлений, тем лучше результат.

Слева: квадрат. В середине: обратная проекция с пяти направлений. Справа: обратная проекция со 100 направлений[8]

Восстановив распределение тканей в одном срезе, мы сдвигаем тело вдоль оси прибора на небольшое расстояние и проделываем эту же операцию еще раз. И еще, и еще, пока не нарежем тело условными плоскостями на ломти, как батон внарезку. После этого можно собрать ломтики, сложить их в компьютере и получить полное описание трехмерного распределения тканей. Этот метод определения трехмерной структуры по серии двумерных срезов известен как томография и давно используется микроскопистами, поскольку позволяет заглянуть внутрь твердых объектов, таких как насекомые или растения. Объект при этом заливают воском, а затем отрезают от него тончайшие ломтики при помощи устройства, похожего на миниатюрную машинку для нарезки колбасы и называемого микротомом (от греческих слов micros – «маленький» + temnein – «резать»). КТ-сканеры используют эту же идею, разве что «нарезку» здесь производит не микротом, а рентгеновские лучи при помощи математических фокусов.

После этого остается только прибегнуть к рутинным математическим методам обработки трехмерных данных и получения всевозможной информации. Мы можем посмотреть, как выглядели бы ткани на сечении, взятом под совершенно другим углом, или показать только ткани определенного типа, или обозначить условными цветами мышцы, органы и кости. В общем, любые украшательства, на ваш вкус. Главные инструменты здесь – стандартные методы обработки изображений, опирающиеся в конечном итоге на трехмерную координатную геометрию.

На практике все далеко не так просто. Сканер, конечно, делает не бесконечное число снимков с непрерывного множества направлений, а просто большое конечное их число с близких дискретных направлений. Алгоритмы математической обработки приходится модифицировать, чтобы учесть этот факт. Полезно, например, фильтровать данные, чтобы избежать помех на изображении, возникающих в результате использования дискретного множества направлений. Но базовый принцип остается тем же, что выработал Радон более чем за 50 лет до изобретения первого сканера. Английский инженер-электрик Годфри Хаунсфилд построил первый работоспособный сканер в 1971 году. Теорию разработал в 1956–1957 годах американский физик южноафриканского происхождения Аллан Кормак, а опубликована она была в 1963–1964 годах. В то время Кормак не знал о результатах Радона, так что он вывел все, что требовалось, самостоятельно, но позже наткнулся на статью Радона, которая носит более общий характер. Разработка метода и прибора для компьютерной томографии принесла Хаунсфилду и Кормаку в 1979 году Нобелевскую премию по физиологии и медицине. Их аппарат стоил $300. Сегодня стоимость коммерческого КТ-сканера составляет порядка $1,5 млн[9].

Сканеры используются не только в медицине. Египтологи, например, теперь привычно прибегают к их помощи при изучении мумий. Они могут осмотреть скелет и оставшиеся внутренние органы, поискать признаки переломов и болезней и выяснить, где спрятаны религиозные амулеты. Музеи часто добавляют в свои экспозиции виртуальные мумии, снабдив их тачскрином, которым могут управлять посетители: они могут сами снять полотняные пелены слой за слоем, затем удалить кожу, затем мышцы, пока не останутся одни кости. Все это делается при помощи математики, воплощенной в компьютере: трехмерная геометрия, обработка изображения, методы отображения графической информации.

Существует немало и других типов сканеров. Есть ультразвуковые аппараты; аппараты позитронно-эмиссионной томографии (ПЭТ), регистрирующие элементарные частицы, испускаемые радиоактивными веществами, которые вводятся в организм; магнитно-резонансные томографы (МРТ), регистрирующие магнитные эффекты в ядрах атомов. Последние одно время называли сканерами на эффекте ядерного магнитного резонанса (ЯМР), пока рекламщики не сообразили, что слово «ядерный» может отпугивать людей. И у каждого типа сканера своя математическая история.

10

Улыбнитесь, пожалуйста!

Единственная задача камеры – не мешать процессу создания фотографии.

КЕН РОКУЭЛЛ.

Ваша камера не имеет значения

Каждый год человечество загружает в интернет около триллиона фотографий. Судя по этой цифре, мы излишне оптимистично оцениваем интерес других людей к нашим отпускным селфи, родившемуся в семье ребенку и другим объектам, некоторые из которых даже упоминать не стоит. А снимают сейчас все: делается это быстро и просто, а в телефоне у каждого имеется камера. В работе и производстве этих камер огромную роль играет математика. Крохотные высокоточные объективы – настоящее чудо техники, невозможное без сложнейшей математической физики, связанной с преломлением света трехмерными телами с изогнутыми поверхностями. В этой главе я хочу сосредоточиться всего на одном аспекте современной фотографии: сжатии изображений. Цифровые камеры, самостоятельные или встроенные в телефон, хранят очень подробные изображения в виде двоичных файлов. Создается впечатление, что карты памяти способны хранить больше информации, чем должно на них помещаться. Как же удается заключить так много детальных картинок в небольшой компьютерный файл?

Фотографические изображения содержат много избыточной информации, которую можно удалить без потери точности. Математика позволяет делать это тщательно выстроенными способами. Стандарт JPEG в небольших цифровых камерах типа «навел и щелкнул», который до самого недавнего времени был самым распространенным форматом файлов и до сих пор используется очень широко, предусматривает пять математических преобразований, выполняемых последовательно. В них задействован дискретный фурье-анализ, алгебра и теория шифрования. Все эти преобразования заложены в программное обеспечение камеры, которое сжимает данные, прежде чем записать их на карту памяти.

Если, конечно, вы не предпочитаете данные в формате RAW – по существу, это непосредственно то, что камера считала с матрицы. Емкость карт памяти растет так быстро, что сжимать файлы уже нет абсолютной необходимости. Но в этом случае вам в конечном итоге приходится манипулировать изображениями объемом по 32 мегабайта каждое, тогда как раньше они имели вдесятеро меньший размер, да и в «облако» такие файлы загружаются много медленнее. Стоит ли этим заморачиваться, зависит от того, кто вы и для чего нужны фотографии. Если вы профессионал, это для вас,

1 ... 55 56 57 58 59 60 61 62 63 ... 85
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт.
Комментарии