Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт
Шрифт:
Интервал:
Закладка:
Инженеры SRAMA применяли к списку измеряемых параметров все традиционные статистические инструменты, но не нашли параметров, которые хорошо коррелировали бы со свиваемостью. Именно здесь на сцену вышла моя книга по теории хаоса.
* * *
Название «теория хаоса» придумали журналисты, математикам она лучше известна как часть более широкой теории нелинейной динамики, которая изучает, как системы ведут себя, когда их поведение во времени управляется конкретным математическим правилом. Измерьте состояние системы сейчас, примените правило и рассчитайте состояние через крохотный промежуток времени в будущем. Затем повторите эту операцию. Время тикает, и вы можете вычислить состояние системы в сколь угодно далеком будущем. Методика расчета отвечает за динамику в названии. «Нелинейная» приблизительно означает, что правило не просто делает будущее состояние пропорциональным текущему состоянию или разнице между текущим и опорным состояниями. Для непрерывно изменяющегося времени правило задается дифференциальным уравнением, которое соотносит скорость изменения переменных системы с их текущими значениями.
Существует также дискретная версия, в которой время тикает небольшими интервалами, шаг за шагом. Она описывается уравнением в конечных разностях: состояние после одного тика есть то, что происходит с текущим состоянием при применении правила. Именно дискретная версия решает проблему навивки пружин. К счастью, она легче для понимания, чем непрерывная. Работает она примерно так:
состояние в момент времени 0 →
→ состояние в момент 1 →
→ состояние в момент 2 → …,
где стрелочка означает «применить правило». Например, если правило звучит как «удвоить число», а стартуем мы с начального состояния, равного 1, то последовательные шаги дадут нам цепочку состояний 1, 2, 4, 8, …, которые всякий раз удваиваются. Это линейное правило, потому что результат пропорционален входным данным. Правило вроде «возвести в квадрат и вычесть 3» нелинейно, и в данном случае оно дает цепочку состояний
1 → –2 → 1 → –2 → …,
где раз за разом повторяются одни и те же два числа. Это «периодическая» динамика, примерно как смена времен года. При заданном начальном состоянии будущее поведение системы полностью предсказуемо: состояния 1 и –2 просто сменяют друг друга.
Если правило звучит как «возвести в квадрат и вычесть 4», мы получаем
1 → –3 → 5 → 21 → 437 → …,
и дальше числа все возрастают и возрастают (уменьшение происходит только на первом шаге). Последовательность по-прежнему предсказуема: достаточно просто вовремя применять правило. Поскольку оно носит детерминистский характер – в нем нет случайных величин, – каждая последующая величина однозначно определяется предыдущей, так что все будущее полностью предсказуемо.
То же относится и к непрерывным версиям, хотя в этом случае предсказуемость не так очевидна. Такая последовательность чисел называется временны́м рядом.
Вдохновляясь примерами Галилео Галилея и Ньютона, математики и физики открыли бесчисленное количество правил подобного рода, таких как галилеево правило для положения тела, падающего под действием силы тяжести, и ньютонов закон всемирного тяготения. Этот процесс привел к всеобщей вере в то, что любая механическая система подчиняется детерминистским правилам и, соответственно, предсказуема. Однако великий французский математик Анри Пуанкаре обнаружил в этих рассуждениях прореху, о чем и написал в 1890 году. Закон всемирного тяготения Ньютона подразумевает, что два небесных тела, например звезда и планета, движутся по эллиптическим орбитам вокруг общего центра масс, который в таком случае обычно располагается внутри звезды. Движение носит периодический характер, а периодом называется время, за которое система делает один оборот и возвращается в начальное положение. Пуанкаре задался вопросом, что происходит в случае, если тел три (Солнце, планета, Луна), и выяснил, что в некоторых случаях движение носит чрезвычайно нерегулярный характер. В дальнейшем математики, следуя за его открытием, поняли, что нерегулярность такого типа делает будущее системы непредсказуемым. Прореха в «доказательстве» предсказуемости заключается в том, что оно верно только в том случае, если вы можете измерить начальное состояние и провести все расчеты с идеальной точностью – с точностью до бесконечного числа десятичных знаков. Иначе даже крохотные расхождения могут вырасти экспоненциально и поглотить истинное значение.
Это и есть хаос или, правильнее сказать, детерминистский хаос. Даже если вы знаете правила и в них нет случайных составляющих, на практике будущее может оказаться непредсказуемым, даже если оно предсказуемо в теории. Мало того, поведение системы может оказаться настолько нерегулярным, что будет выглядеть как случайное. В истинно случайной системе текущее состояние не дает вообще никакой информации о следующем состоянии. В хаотической системе присутствуют тонкие закономерности. Тайные закономерности, стоящие за хаосом, носят геометрический характер и могут быть визуализированы путем построения решений модельных уравнений как кривых в пространстве, координатами которого являются переменные состояния. Иногда, если немного подождать, эти кривые начинают прорисовывать сложную геометрическую фигуру. Если кривые, выходящие из разных начальных точек, выписывают одну и ту же фигуру, мы называем эту фигуру аттрактором. Аттрактор характеризует скрытые закономерности в хаотическом поведении.
Слева: аттрактор Лоренца. Справа: реконструкция его топологии по одной переменной
В качестве стандартного примера обычно приводят уравнения Лоренца – динамическую систему с непрерывным временем, моделирующую конвекционный поток, например движение теплого воздуха в атмосфере. В этом уравнении три переменные. На рисунке, отражающем их изменения в трехмерной системе координат, все кривые решений в конечном итоге движутся вдоль фигуры, напоминающей маску, – это и есть аттрактор Лоренца. Хаос возникает потому, что, хотя кривые решений странствуют туда и сюда по этому аттрактору (ну хорошо, очень близко к нему), разные решения делают это очень по-разному. Одно может, например, шесть раз обойти вокруг левой петли, а затем семь раз вокруг правой; близлежащая кривая может восемь раз обойти левую петлю, затем трижды правую и т. д. Так что предсказанные варианты будущего этих кривых сильно различаются, хотя и начинаются они с очень похожих значений переменных.
Однако краткосрочные предсказания более надежны. Поначалу две близкие кривые остаются близкими, и только позже они начинают расходиться. Так что хаотическая система предсказуема в краткосрочной перспективе, в отличие от истинно случайной системы, которая вообще непредсказуема. Это одна из тех скрытых закономерностей, которые отличают детерминистский хаос от случайности.
При работе с конкретной математической моделью мы знаем все переменные и можем с помощью компьютера рассчитать, как они изменяются. Мы можем также визуализировать аттрактор, изобразив эти изменения в соответствующих координатах. Когда же мы наблюдаем реальную систему, которая может оказаться хаотической, такая роскошь доступна не всегда. В худшем случае удается измерить только одну из переменных. Поскольку остальные